168 research outputs found

    Characterization of an Ionization Readout Tile for nEXO

    Full text link
    A new design for the anode of a time projection chamber, consisting of a charge-detecting "tile", is investigated for use in large scale liquid xenon detectors. The tile is produced by depositing 60 orthogonal metal charge-collecting strips, 3~mm wide, on a 10~\si{\cm} ×\times 10~\si{\cm} fused-silica wafer. These charge tiles may be employed by large detectors, such as the proposed tonne-scale nEXO experiment to search for neutrinoless double-beta decay. Modular by design, an array of tiles can cover a sizable area. The width of each strip is small compared to the size of the tile, so a Frisch grid is not required. A grid-less, tiled anode design is beneficial for an experiment such as nEXO, where a wire tensioning support structure and Frisch grid might contribute radioactive backgrounds and would have to be designed to accommodate cycling to cryogenic temperatures. The segmented anode also reduces some degeneracies in signal reconstruction that arise in large-area crossed-wire time projection chambers. A prototype tile was tested in a cell containing liquid xenon. Very good agreement is achieved between the measured ionization spectrum of a 207^{207}Bi source and simulations that include the microphysics of recombination in xenon and a detailed modeling of the electrostatic field of the detector. An energy resolution σ/E\sigma/E=5.5\% is observed at 570~\si{keV}, comparable to the best intrinsic ionization-only resolution reported in literature for liquid xenon at 936~V/\si{cm}.Comment: 18 pages, 13 figures, as publishe

    Sensitivity and discovery potential of the proposed nEXO experiment to neutrinoless double beta decay

    Full text link
    The next-generation Enriched Xenon Observatory (nEXO) is a proposed experiment to search for neutrinoless double beta (0νββ0\nu\beta\beta) decay in 136^{136}Xe with a target half-life sensitivity of approximately 102810^{28} years using 5×1035\times10^3 kg of isotopically enriched liquid-xenon in a time projection chamber. This improvement of two orders of magnitude in sensitivity over current limits is obtained by a significant increase of the 136^{136}Xe mass, the monolithic and homogeneous configuration of the active medium, and the multi-parameter measurements of the interactions enabled by the time projection chamber. The detector concept and anticipated performance are presented based upon demonstrated realizable background rates.Comment: v2 as publishe

    An integrated online radioassay data storage and analytics tool for nEXO

    Full text link
    Large-scale low-background detectors are increasingly used in rare-event searches as experimental collaborations push for enhanced sensitivity. However, building such detectors, in practice, creates an abundance of radioassay data especially during the conceptual phase of an experiment when hundreds of materials are screened for radiopurity. A tool is needed to manage and make use of the radioassay screening data to quantitatively assess detector design options. We have developed a Materials Database Application for the nEXO experiment to serve this purpose. This paper describes this database, explains how it functions, and discusses how it streamlines the design of the experiment

    Performance of novel VUV-sensitive Silicon Photo-Multipliers for nEXO

    Full text link
    Liquid xenon time projection chambers are promising detectors to search for neutrinoless double beta decay (0νββ\nu \beta \beta), due to their response uniformity, monolithic sensitive volume, scalability to large target masses, and suitability for extremely low background operations. The nEXO collaboration has designed a tonne-scale time projection chamber that aims to search for 0νββ\nu \beta \beta of \ce{^{136}Xe} with projected half-life sensitivity of 1.35×10281.35\times 10^{28}~yr. To reach this sensitivity, the design goal for nEXO is ≤\leq1\% energy resolution at the decay QQ-value (2458.07±0.312458.07\pm 0.31~keV). Reaching this resolution requires the efficient collection of both the ionization and scintillation produced in the detector. The nEXO design employs Silicon Photo-Multipliers (SiPMs) to detect the vacuum ultra-violet, 175 nm scintillation light of liquid xenon. This paper reports on the characterization of the newest vacuum ultra-violet sensitive Fondazione Bruno Kessler VUVHD3 SiPMs specifically designed for nEXO, as well as new measurements on new test samples of previously characterised Hamamatsu VUV4 Multi Pixel Photon Counters (MPPCs). Various SiPM and MPPC parameters, such as dark noise, gain, direct crosstalk, correlated avalanches and photon detection efficiency were measured as a function of the applied over voltage and wavelength at liquid xenon temperature (163~K). The results from this study are used to provide updated estimates of the achievable energy resolution at the decay QQ-value for the nEXO design
    • …
    corecore