5 research outputs found

    Fused filament fabrication of commercial conductive filaments: experimental study on the process parameters aimed at the minimization, repeatability and thermal characterization of electrical resistance

    Get PDF
    Abstract Nowadays, a challenging scenario involving additive manufacturing (AM), or 3D printing, relates to concerns on the manufacturing of electronic devices. In particular, the possibility of using fused filament fabrication (FFF) technology, which is well known for being very widespread and inexpensive, to fabricate structures with embedded sensing elements, is really appealing. Several researchers in this field have highlighted the high electrical resistance values and variability in 3D-printed strain sensors made via FFF. It is important to find a way to minimize the electrical resistance and variability among strain sensors printed under the same conditions for several reasons, such as reducing the measurement noise and better balancing four 3D-printed strain gauges connected to form a Wheatstone bridge to obtain better measurements. In this study, a design of experiment (DoE) on 3D-printed strain gauges, studying the relevance of printing and design parameters, was performed. Three different commercial conductive materials were analyzed, including a total of 105 printed samples. The output of this study is a combination of parameters which allow both the electrical resistance and variability to be minimized; in particular, it was discovered that the "welding effect" due to the layer height and printing orientation is responsible for high values of resistance and variability. After the optimization of printing and design parameters, further experiments were performed to characterize the sensitivity of each specimen to mechanical and thermal stresses, highlighting an interesting aspect. A sensible variation of the electrical resistance at room temperature was observed, even if no stress was applied to the specimen, suggesting the potential of exploiting these materials for the 3D printing of highly sensitive temperature sensors

    A virtual platform for real-time performance analysis of electromagnetic tracking systems for surgical navigation

    Get PDF
    Electromagnetic Tracking Systems (EMTSs) are widely used in surgical navigation, allowing to improve the outcome of diagnosis and surgical interventions, by providing the surgeon with real-time position of surgical instruments during medical procedures. However, particular effort was dedicated to the development of efficient and robust algorithms, to obtain an accurate estimation of the instrument position for distances from the magnetic field generator beyond 0.5 m. Indeed, the main goal is to improve the limited range of current commercial systems, which strongly affects the freedom of movement of the medical team. Studies are currently being conducted to optimize the magnetic field generator configuration (both geometrical arrangements and electrical properties) since it affects tracking accuracy. In this paper, we propose a virtual platform for assessing the performance of EMTSs for surgical navigation, providing real-time results and statistics, and allowing to track instruments both in real and simulated environments. Simulations and experimental tests are performed to validate the proposed virtual platform, by employing it to assess the performance of a real EMTS. The platform offers a real-time tool to analyze EMTS components and field generator configurations, for a deeper understanding of EMTS technology, thus supporting engineers during system design and characterization.</p

    Detection and Characterization of Multiple Discontinuities in Cables with Time-Domain Reflectometry and Convolutional Neural Networks

    No full text
    In this paper, a convolutional neural network for the detection and characterization of impedance discontinuity points in cables is presented. The neural network analyzes time-domain reflectometry signals and produces a set of estimated discontinuity points, each of them characterized by a class describing the type of discontinuity, a position, and a value quantifying the entity of the impedance discontinuity. The neural network was trained using a great number of simulated signals, obtained with a transmission line simulator. The transmission line model used in simulations was calibrated using data obtained from stepped-frequency waveform reflectometry measurements, following a novel procedure presented in the paper. After the training process, the neural network model was tested on both simulated signals and measured signals, and its detection and accuracy performances were assessed. In experimental tests, where the discontinuity points were capacitive faults, the proposed method was able to correctly identify 100% of the discontinuity points, and to estimate their position and entity with a root-mean-squared error of 13 cm and 14 pF, respectively

    Assessment of Position Repeatability Error in an Electromagnetic Tracking System for Surgical Navigation

    No full text
    In this paper we present a study of the repeatability of an innovative electromagnetic tracking system (EMTS) for surgical navigation, developed to overcome the state of the art of current commercial systems, allowing for the placement of the magnetic field generator far from the operating table. Previous studies led to the development of a preliminary EMTS prototype. Several hardware improvements are described, which result in noise reduction in both signal generation and the measurement process, as shown by experimental tests. The analysis of experimental results has highlighted the presence of drift in voltage components, whose effect has been quantified and related to the variation of the sensor position. Repeatability in the sensor position measurement is evaluated by means of the propagation of the voltage repeatability error, and the results are compared with the performance of the Aurora system (which represents the state of the art for EMTS for surgical navigation), showing a repeatability error about ten times lower. Finally, the proposed improvements aim to overcome the limited operating distance between the field generator and electromagnetic (EM) sensors provided by commercial EM tracking systems for surgical applications and seem to provide a not negligible technological advantage

    Additive Manufacturing for Sensors: Piezoresistive Strain Gauge with Temperature Compensation

    No full text
    Additive manufacturing technologies allow the fabrication of smart objects, which are made up of a dielectric part and an embedded sensor able to give real-time feedback to the final user. This research presents the characterization of a low-cost 3D-printed strain sensor, fabricated using material extrusion (MeX) technology by using a conductive material composed of a polylactic acid (PLA)-based matrix doped with carbon black and carbon nanotubes (CNT), thus making the plastic conductive. A suitable measurement set-up was developed to perform automatic characterization tests using a high repeatability industrial robot to define either displacement or force profiles. The correlation between the applied stimulus and the variation of the electrical resistance of the 3D-printed sensor was evaluated, and an approach was developed to compensate for the effect of temperature. Results show that temperature and hysteresis affect repeatability; nevertheless, the sensor accurately detects impulse forces ranging from 10 g to 50 g. The sensor showed high linearity and exhibited a sensitivity of 0.077 Ω g−1 and 12.54 Ω mm−1 in the force and displacement range of 114 g and 0.7 mm, respectively, making them promising due to their low cost, ease of fabrication, and possible integration into more complex devices in a single-step fabrication cycle
    corecore