206 research outputs found

    In-vitro evaluation of different antimicrobial combinations with and without colistin against carbapenem-resistant acinetobacter baumannii

    Get PDF
    Carbapenem-resistant Acinetobacter baumannii (CR-Ab) infections are associated with high morbidity and mortality. The aim of the study was to evaluate the in-vitro activity of different antimicrobial combinations (with and without colistin, COL) against clinical isolates of CR-Ab collected from patients with CR-Ab infection, including unconventional combinations such as COL + VANcomycin (VAN) and COL + rifampin (RIF). CR-Ab strains were collected from hospitalized patients at Sapienza University of Rome. Antimicrobial susceptibility patterns were determined throughout MIC50/90s whereas the synergistic activity was evaluated by qualitative (i.e., checkerboard) and quantitative (i.e., killing studies) methods. All the strains were found oxacillinase (OXA) producers and tigecycline (TIG) sensitive whereas 2 strains were resistant to COL. Application of the checkerboard method indicated complete synergism in COL combinations at different extension: 21.4%, 57.1%, 42.8%, 35.7% for COL + meropenem (MEM), COL + RIF, COL + VAN and COL + TIG, respectively, with the non-conventional combinations COL + VAN and COL + RIF exhibiting the highest rate of synergism. Regarding COL-free combination, complete synergism was observed in 35.7% of the strains for MEM + TIG. Killing studies showed that the combinations COL + MEM, COL + TIG and MEM + TIG were bactericidal and synergistic against both colistin-sensitive and low colistin-resistant strains whereas only the combinations COL + VAN and COL + RIF showed an early and durable bactericidal activity against all the tested strains, with absence of growth at 24 h. This study demonstrated that COL-based combinations lead to a high level of synergic and bactericidal activity, especially COL + VAN and COL + RIF, even in the presence of high level of COL resistance

    HIV-Reverse Transcriptase Inhibition: Inclusion of Ligand-Induced Fit by Cross-Docking Studies

    Get PDF
    Nonnucleoside reverse transcriptase inhibitors (NNRTIs) have, in addition to the nucleoside reverse transcriptase inhibitors (NRTIs) and protease inhibitors (PIs), a definitive role in the treatment of HIV-1 infections. Since the appearance of HEPT and TIBO, more than 30 structurally different classes of compounds have been reported as NNRTIs, which are specific inhibitors of HIV-1 replication, targeting the HIV-1 reverse transcriptase (RT). Nevirapine and delavirdine are the first formally licensed for clinical use, and others have been licensed afterward, while several are in preclinical or clinical development. The NNRTIs interact with a specific site of HIV-1 RT (nonnucleoside binding site, NNBS) that is close to, but distinct from, the NRTI binding site. In this work we report the application of the Autodock program assessing its usability through reproduction of 41 NNRTI experimental bound conformations. Moreover, cross-docking experiments on the wild-type and mutated RT forms were conducted to take into account the enzyme flexibility as a valuable tool for structure-based drug design (SBDD) studies and to gain insight on the mode of action of new anti-HIV agents active against both wild-type and resistant strains

    Chemical and antimicrobial analyses of Sideritis romana L. subsp. purpurea (Tal. ex Benth.) Heywood, an endemic of the Western Balkan

    Get PDF
    A comprehensive study on essential oil and different solvent extracts of Sideritis romana L. subsp. purpurea (Tal. ex Benth.) Heywood (Lamiaceae) from Montenegro is reported. The gas chromatography-mass spectrometry analysis of the essential oil revealed a total of 43 components with bicyclogermacrene (23.8%), germacrene D (8%), (E)-caryophyllene (7.9%) and spathulenol (5.5%) as the major ones. Sesquiterpenoid group was found to be the most dominant one (64.8%), with 19.9% of the oxygenated forms. In the crude methanol extract of the investigated plant, obtained by Sohhlet exraction, the total phenol content was 14.7 ± 0.4 mg of GA/g, the total flavonoids were 0.29 ± 0.03% expressed as hyperoside percentage, whereas the total tannins content was 0.22 ± 0.04% expressed as pyrogallol percentage. For the antimicrobial activity determination, the following microorganisms have been used: methicillin-susceptible Staphylococcus aureus (MSSA (American Type Culture Collection (ATCC) 29213)) and methicillin-resistant S. aureus (MRSA (clinical strain)), Escherichia coli (ATCC 25922), carbapenem-susceptible Klebsiella pneumoniae (clinical strain), carbapenem-resistant K. pneumoniae (clinical strain) and Candida albicans (ATCC 14053). The essential oil showed high potency against MSSA and MRSA, both at high (~5 × 10 5 CFU/mL) and low (~5 × 10 3 CFU/mL) inoculum. With respect to MSSA, the minimal inhibitory concentration (MIC) value was 0.307 mg/mL, with bactericidal activity obtained at 0.615 mg/mL, while, in the case of MRSA, the MIC and minimal bactericidal concentration (MBC) values were 0.076 and 0.153 mg/mL, respectively. Regarding anti-Candida albicans activity, the MIC value was 2.46 mg/mL without reaching fungicidal activity. In addition to the observed essential oil efficacy, different solvent extracts were analyzed for their antimicrobial activity. Similarly to the essential oil, thehighest efficacy was observed against both MSSA and MRSA strains, at high and low inoculums, in the case of the 1,2-dichloroethane and methanol extracts. A potent fungicidal activity has been also found for the n-hexane and 1,2-dichloroethane extracts. It can be concluded that Sideritis romana L. subsp. purpurea (Tal. ex Benth.) Heywood provides a wide range of application in different fields such as phytochemistry, pharmacology, toxicology or pharmacognosy

    Antimicrobial and antibiofilm activity and machine learning classification analysis of essential oils from different mediterranean plants against pseudomonas aeruginosa

    Get PDF
    Pseudomonas aeruginosa is a ubiquitous organism and opportunistic pathogen that can cause persistent infections due to its peculiar antibiotic resistance mechanisms and to its ability to adhere and form biofilm. The interest in the development of new approaches for the prevention and treatment of biofilm formation has recently increased. The aim of this study was to seek new non-biocidal agents able to inhibit biofilm formation, in order to counteract virulence rather than bacterial growth and avoid the selection of escape mutants. Herein, different essential oils extracted from Mediterranean plants were analyzed for their activity againstP. aeruginosa. Results show that they were able to destabilize biofilm at very low concentration without impairing bacterial viability. Since the action is not related to a bacteriostatic/bactericidal activity onP. aeruginosa, the biofilm change of growth in presence of the essential oils was possibly due to a modulation of the phenotype. To this aim, application of machine learning algorithms led to the development of quantitative activity-composition relationships classification models that allowed to direct point out those essential oil chemical components more involved in the inhibition of biofilm production. The action of selected essential oils on sessile phenotype make them particularly interesting for possible applications such as prevention of bacterial contamination in the community and in healthcare environments in order to prevent human infections. We assayed 89 samples of different essential oils asP. aeruginosaanti-biofilm. Many samples inhibitedP. aeruginosabiofilm at concentrations as low as 48.8 µg/mL. Classification of the models was developed through machine learning algorithms

    Genotoxicity assessment of piperitenone oxide: an in vitro and in silico evaluation

    Get PDF
    Piperitenone oxide, a natural flavouring agent also known as rotundifolone, has been studied for the genotoxicity assessment by an integrated in vitro and in silico experimental approach, including the bacterial reverse mutation assay, the micronucleus test, the comet assay and the computational prediction by Toxtree and VEGA tools. Under our experimental conditions, the monoterpene showed to induce both point mutations (i.e. frameshift, base-substitution and/or oxidative damage) and DNA damage (i.e. clastogenic or aneuploidic damage, or single-strand breaks). Computational prediction for piperitenone oxide agreed with the toxicological data, and highlighted the presence of the epoxide function and the α,β-unsaturated carbonyl as possible structural alerts for DNA damage. However, improving the toxicological libraries for natural occurring compounds is required in order to favour the applicability of in silico models to the toxicological predictions. Further in vivo evaluations are strictly needed in order to evaluate the role of the bioavailability of the substance and the metabolic fate on its genotoxicity profile. To the best of our knowledge, these data represent the first evaluation of the genotoxicity for this flavour compound and suggest the need of further studies to assess the safety of piperitenone oxide as either flavour or fragrance chemicals

    Essential oils against bacterial isolates from cystic fibrosis patients by means of antimicrobial and unsupervised machine learning approaches

    Get PDF
    Recurrent and chronic respiratory tract infections in cystic fibrosis (CF) patients result in progressive lung damage and represent the primary cause of morbidity and mortality. Staphylococcus aureus (S. aureus) is one of the earliest bacteria in CF infants and children. Starting from early adolescence, patients become chronically infected with Gram-negative non-fermenting bacteria, and Pseudomonas aeruginosa (P. aeruginosa) is the most relevant and recurring. Intensive use of antimicrobial drugs to fight lung infections inevitably leads to the onset of antibiotic resistant bacterial strains. New antimicrobial compounds should be identified to overcome antibiotic resistance in these patients. Recently interesting data were reported in literature on the use of natural derived compounds that inhibited in vitro S. aureus and P. aeruginosa bacterial growth. Essential oils, among these, seemed to be the most promising. In this work is reported an extensive study on 61 essential oils (EOs) against a panel of 40 clinical strains isolated from CF patients. To reduce the in vitro procedure and render the investigation as convergent as possible, machine learning clusterization algorithms were firstly applied to pick-up a fewer number of representative strains among the panel of 40. This approach allowed us to easily identify three EOs able to strongly inhibit bacterial growth of all bacterial strains. Interestingly, the EOs antibacterial activity is completely unrelated to the antibiotic resistance profile of each strain. Taking into account the results obtained, a clinical use of EOs could be suggested

    Shmt2: a stat3 signaling new player in prostate cancer energy metabolism

    Get PDF
    Prostate cancer (PCa) is a multifactorial disease characterized by the aberrant activity of different regulatory pathways. STAT3 protein mediates some of these pathways and its activation is implicated in the modulation of several metabolic enzymes. A bioinformatic analysis indicated a STAT3 binding site in the upstream region of SHMT2 gene. We demonstrated that in LNCaP, PCa cells' SHMT2 expression is upregulated by the JAK2/STAT3 canonical pathway upon IL-6 stimulation. Activation of SHTM2 leads to a decrease in serine levels, pushing PKM2 towards the nuclear compartment where it can activate STAT3 in a non-canonical fashion that in turn promotes a transient shift toward anaerobic metabolism. These results were also confirmed on FFPE prostate tissue sections at different Gleason scores. STAT3/SHMT2/PKM2 loop in LNCaP cells can modulate a metabolic shift in response to inflammation at early stages of cancer progression, whereas a non-canonical STAT3 activation involving the STAT3/HIF-1α/PKM2 loop is responsible for the maintenance of Warburg effect distinctive of more aggressive PCa cells. Chronic inflammation might thus prime the transition of PCa cells towards more advanced stages, and SHMT2 could represent a missing factor to further understand the molecular mechanisms responsible for the transition of prostate cancer towards a more aggressive phenotyp

    Essential oils biofilm modulation activity, chemical and machine learning analysis. Application on staphylococcus aureus isolates from cystic fibrosis patients

    Get PDF
    Bacterial biofilm plays a pivotal role in chronic Staphylococcus aureus (S. aureus) infection and its inhibition may represent an important strategy to develop novel therapeutic agents. The scientific community is continuously searching for natural and “green alternatives” to chemotherapeutic drugs, including essential oils (EOs), assuming the latter not able to select resistant strains, likely due to their multicomponent nature and, hence, multitarget action. Here it is reported the biofilm production modulation exerted by 61 EOs, also investigated for their antibacterial activity on S. aureus strains, including reference and cystic fibrosis patients’ isolated strains. The EOs biofilm modulation was assessed by Christensen method on five S. aureus strains. Chemical composition, investigated by GC/MS analysis, of the tested EOs allowed a correlation between biofilm modulation potency and putative active components by means of machine learning algorithms application. Some EOs inhibited biofilm growth at 1.00% concentration, although lower concentrations revealed dierent biological profile. Experimental data led to select antibiofilm EOs based on their ability to inhibit S. aureus biofilm growth, which were characterized for their ability to alter the biofilm organization by means of SEM studies

    Indolyl aryl sulphones as HIV-1 non-nucleoside reverse transcriptase inhibitors: synthesis, biological evaluation and binding mode studies of new derivatives at indole-2-carboxamide.

    Get PDF
    New non-nucleoside reverse transcriptase inhibitors (NNRTIs) that are active against the commonly occurring mutations of HIV are urgently needed for the treatment of AIDS. We synthesized new NNRTIs of the indolyl aryl sulphone (IAS) family, which are endowed with high antiviral potency against HIV-1 wt (wild-type), and the Y181C and K103N-Y181C drug resistant mutant strains. Several new compounds were highly active in lymphocytes infected with primary isolates carrying the K103N-V108I-M184V and L100I-V108I mutations. The design of new IASs was based on three-dimensional quantitative structure-activity relationship (3D QSAR) studies and docking simulations. A cross-docking study was also undertaken to gain some insights in to the binding mode of the newly synthesized IASs in the wt and mutated isoforms of reverse transcriptase

    A Series of COX-2 Inhibitors Endowed with NO-Releasing Properties: Synthesis, Biological Evaluation, and Docking Analysis

    Get PDF
    Herein we report the synthesis, biological evaluation, and docking analysis of a class of cyclooxygenase-2 (COX-2) inhibitors with nitric oxide (NO)-releasing properties. In an earlier study, a number of selective COX-2 inhibitors/NO donors were developed by conjugating a diarylpyrrole scaffold endowed with selective COX-2 inhibitory properties with various nitrooxyalkyl side chains such as esters, -amino esters, amides, -amino amides, ethers, -amino ethers, inverse esters, and amides. These candidates were found to have high invitro potencies (COX-2 inhibition at 10m: 96%), great efficacy in determining NO-vasorelaxing responses, and good antinociceptive activity in an abdominal writhing test. Among the compounds synthesized in the present work, derivative 2b [2-(2-(1-(3-fluorophenyl)-2-methyl-5-(4-sulfamoylphenyl)-1H-pyrrol-3-yl)acetamido)ethyl nitrate] showed particularly outstanding activity, with efficacy similar to that of celecoxib even at very low concentrations
    • …
    corecore