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Abstract: Purpose: Herein, an extended investigation of Tea tree oil (TTO) against a number of
multi-drug resistant (MDR) microorganisms in liquid and vapor phases is reported. Methods:
The activity of TTO was tested against methicillin-sensitive Staphylococcus aureus (MSSA),
Escherichia coli, and clinical strains of methicillin-resistant S. aureus (MRSA), extended-spectrum beta
lactamases producer carbapenem-sensitive Klebsiella pneumoniae (ESBL-CS-Kp), carbapenem-resistant
K. pneumoniae (CR-Kp), Acinetobacter baumannii (CR-Ab), and Pseudomonas aeruginosa (CR-Pa).
Minimal inhibitory/bactericidal concentrations (MIC/MBCs) and synergistic activity between TTO
and different antimicrobials were determined. In the vapor assay (VP), TTO-impregnated discs were
placed on the lid of a petri dish and incubated for 24 h at 37 ◦C. Results: TTO showed a potent
bactericidal activity against all the tested microorganisms. TTO in combination with each reference
antimicrobial showed a high level of synergism at sub-inhibitory concentrations, particularly with
oxacillin (OXA) against MRSA. The VP assay showed high activity of TTO against CR-Ab. Conclusion:
Evaluation of in-vitro activity clearly indicated TTO as a potential effective antimicrobial treatment
either alone or in association with known drugs against MDR. Therefore, TTO could represent the
basis for a possible role in non-conventional regimens against S. aureus and Gram-negative MDR.
TTO in VP might represent a promising option for local therapy of pneumonia caused by CR-Ab.

Keywords: multi-drug resistant bacteria; essential oils; Melaleuca alternifolia; methicillin-resistant
Staphylococcus aureus; carbapenem-resistant microorganisms

1. Introduction

The emergence of multidrug-resistant (MDR) microorganisms represents a global challenge
worldwide, since therapeutic options are limited, resulting in thousands of deaths [1]. Furthermore,
there is a paucity of novel and effective antimicrobial agents in the pipeline, especially against
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carbapenem-resistant (CR) Acinetobacter baumannii and CR Enterobacteriaceae carrying enzymes other
than class A carbapenemases [2].

Essential oils (EOs) are volatile, natural, fragrant liquids that can be extracted from different parts
of the plants (especially leaves and flowers) presenting anti-inflammatory, antiviral, and antibacterial
properties [3]. Given their antimicrobial activity broad-spectrum, together with the possibility of
restoring antibiotic susceptibility [4,5], several efforts have been made to consider the use of EOs
for the treatment of a wide range of infections, including those caused by MDR microorganisms [6].
EOs’ activity is commonly ascribed to the perturbation of cell membrane structural integrity, leading
bacterial cell to death [7] and their potency varies with the type of microorganisms, Gram-positive
bacteria being more susceptible than Gram-negatives [8–11].

Tea tree oil (TTO) is produced by steam distillation of leaves and terminal branches of
Melaleuca alternifolia and is currently used in traditional medicine as a topical antiseptic and
anti-inflammatory agent and widely formulated into many cosmetic and personal care products [12].
TTO is mainly known for its antibacterial properties [13], exerted by the inhibition of bacterial
respiration and the disruption of the permeability barrier of microbial membrane structures, as well as
by the induction of a leakage of potassium ions, both in Gram-positive and Gram-negative bacteria [14];
in addition, it has been widely investigated in synergy with conventional antimicrobials, such as
vancomycin [15] and aminoglycosides for S. aureus and E. coli [16] and, recently, combined with
different nanoparticles [17]. However, little is known with regard to the activity of TTO against MDR
and pan-drug resistant (PDR) Gram-negative strains both in liquid and VP as well as the potential
interaction (i.e., restoring antibiotic sensitivity) between beta-lactams and TTO towards MRSA.

Based on the above considerations and continuing the investigations on EOs as effective
antimicrobial agents [10,18–23], the main aim of this report was to evaluate the in-vitro activity
of a chemically characterized commercial TTO, alone and in combination with different antimicrobials,
against methicillin-susceptible Staphylococus aureus (MSSA), methicillin-resistant Staphylococus aureus
(MRSA), Escherichia coli and MDR Gram-negative bacteria including extended-spectrum beta
lactamases (ESBLs) producer carbapenem-sensitive Klebsiella pneumoniae (ESBL-CS-Kp), ESBL and
carbapenem-resistant K. pneumoniae (CR-Kp), carbapenem-resistant Acinetobacter baumannii (CR-Ab)
and carbapenem-resistant Pseudomonas aeruginosa (CR-Pa). In addition, the antibacterial effectiveness
of TTO in the VP against the abovementioned microorganisms was investigated.

2. Results

2.1. TTO Chemical Characterization

Chemical TTO characterization was performed throughout gas chromatographic/mass
spectrometric (GC/MS) analysis both in the liquid and vapor phase (VP).

Among the several chemical components contained in the TTO sample (Table 1), terpinen 4-ol,
eucalyptol, α-pinene, and γ-terpinene were found to be the most abundant by the classical GC/MS
analysis performed on the liquid EO (35.4%, 15.2%, 12.4%, 9.8%, respectively). A different scenario
was instead observed by performing the EO VP analysis through headspace technique. A direct
comparison of the two analyses indicated a marked increase in the percentage of α-pinene (22.5%) and
almost 20% reduction in terpinen 4-ol (28.7%) in the VP.
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Table 1. Chemical composition (%) of TTO.

# 1 Component 2 LRI 3 LRIlit
4 A1% 5 A2% 6

1 α-pinene 1040 1039 12.4 22.5
2 β-pinene 1131 1124 1.8 2.4
3 1,4-cineole 1192 1192 0.5 -
4 α-terpinene 1197 1195 2.8 2.9
5 d-limonene 1216 1219 2.3 2.8
6 eucalyptol 1231 1230 15.2 16.5
7 γ-terpinene 1266 1265 9.8 10.7
8 o-cymene 1291 1287 6.3 8.5
9 terpinolene 1306 1299 1.6 1.6

10 aromadendrene 1600 1603 1.9 -
11 terpinen-4-ol 1631 1633 35.4 28.7
12 α-terpineol 1718 1724 8.1 3.4
13 ledene 1715 1707 1.1 -
14 globulol 2110 2104 0.8 -

Total 100 100
1: compound identification number; 2: components are listed according to their elution order on a polar column.
3: Linear Retention indices measured on a polar column; 4: Linear Retention indices from literature; 5: Area by
standard GC-MS (%); 6: Area by Head Space GC-MS (%). Only chemical components with percentages greater than
0.1% were included.

2.2. Antimicrobial Susceptibility

TTO minimal inhibitory/bactericidal concentrations (MIC/MBCs, respectively) were evaluated
against a list of standard and clinical isolate strains of important microorganisms such as MSSA, E. coli,
MRSA, ESBL-CS-Kp, CR-Ab, and CR-Pa. AMK, CFZ, MEM, OXA, COL, RIF and VAN were used as
references drugs (Table 2). As expected, CR strains exhibited high MEM MIC/MBC values whereas
both MSSA and MRSA showed sensitivity to VAN and RIF.

TTO showed a potent bactericidal activity (expressed in v/v percentage) against all the tested
Gram-negative microorganisms, with MIC/MBCs 0.25%/0.25% for CR-Ab, CR-Kp and E. coli, 1%/1%
for CR-Pa, 0.5%/0.5% for ESBL-CS-Kp. With regard to MSSA and MRSA, MIC/MBCs were 1%/2%
and 0.5%/2%, respectively. For all the tested microorganisms, the MBC resulted in absence of bacterial
growth after 24 h of incubation.

2.3. Synergistic Activity

TTO in combination with each reference antimicrobial showed a high level of synergism at
sub-inhibitory concentrations, especially with CFZ/OXA/AMK against both MSSA and MRSA and
with MEM/AMK/COL against all Gram-negative microorganisms (Table 3).

Notably, TTO at sub-inhibitory concentrations lowered OXA and CFZ MICs for MRSA from 64 to
2 µg/mL and from 32 to 1 µg/mL, respectively.
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Table 2. Antibacterial activity of TTO and different antimicrobials against MSSA, MRSA, Escherichia coli, ESBL-CS-Kp, ESBL-CR-Kp, CR-Ab, and CR-Pa.

Strains
TTO 1 AMK 2 OXA 3 CFZ 4 VAN 5 RIF 6 MEM 7 COL 8

MIC 9 MBC
10 MIC MBC MIC MBC MIC MBC MIC MBC MIC MBC MIC MBC MIC MBC

% v/v µg/mL µg/mL µg/mL µg/mL µg/mL µg/mL µg/mL

MSSA 11 1 2 4 8 0.25 0.50 0.50 0.50 0.50 1 0.007 0.007 NA NA
MRSA 12 0.50 2 32 32 32 64 64 128 1 1 0.007 0.007 NA NA
E. coli 13 0.25 0.25 4 4 NA 20 NA NA NA 0.060 0.060 0.50 0.50

ESBL-CS-Kp 14,15,16 0.50 0.50 0.50 0.50 NA NA NA NA 0.125 0.250 256 256
ESBL-CR 17 0.25 0.25 64 64 NA NA NA NA 256 512 128 128

CR-Ab 18 0.25 0.25 8 16 NA NA NA NA 64 128 0.25 0.25
CR-Pa 19 1 1 8 8 NA NA NA NA 8 16 1 2

1: Tea Tree Oil; 2: amikacin; 3: oxacillin; 4: cefazolin; 5: vancomycin; 6: rifampin; 7: meropenem; 8: colistin. 9: Minimal Inhibitory Concentration; 10: Minimal Bactericidal Concentration;
11: Methicillin-susceptibility Staphylococcus aureus; 12: Methicillin-resistant Staphylococcus aureus; 13: Escherichia coli; 14: Extended Spectrum Beta-Lactamases; 15: Carbapenem-Susceptible;
16: Kp; 17: Carbapenem-Resistant; 18: Acinetobacter baumannii; 19: Pseudomonas aeruginosa; 20: Not Active.

Table 3. Qualitative assessment of synergistic activity by FICI * values of TTO combined with different antimicrobials against MSSA, MRSA; Escherichia coli,
ESBL-CS-Kp, ESBL-CR-Kp, CR-Ab, and CR-Pa.

Strains TTO 1 + AMK 2 TTO + OXA 3 TTO + CFZ 4 TTO + VAN 5 TTO + RIF 6 TTO + MEM 7 TTO + COL 8

MSSA 9 0.25 0.32 0.25 >0.5 0.32 - -
MRSA 10 0.20 0.32 0.32 >0.5 0.32 - -
E. coli 11 0.25 NA 18 NA NA NA >0.50 0.13

ESBL-CS-Kp 12,13,14 >0.50 NA NA NA NA 0.50 0.32
ESBL-CR-Kp 15 0.50 NA NA NA NA 0.32 0.32

CR-Ab 16 0.32 NA NA NA NA 0.32 0.21
CR-Pa 17 0.25 NA NA NA NA 0.50 0.25

*: FIC index; 1: Tea Tree Oil; 2: amikacin; 3: oxacillin; 4: cefazolin; 5: vancomycin; 6: rifampin; 7: meropenem; 8: colistin.; 9: Methicillin-susceptibility Staphylococcus aureus;
10: Methicillin-resistant Staphylococcus aureus; 11: Escherichia coli; 12: Extended Spectrum Beta-Lactamases; 13: Carbapenem-Susceptible; 14: Kp; 15: Carbapenem-Resistant;
16: Acinetobacter baumannii; 17: Pseudomonas aeruginosa; 18: Not Applicable.
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2.4. Disk Diffusion (DD) and VP Assay

The DD assay was used to evaluate the antimicrobial activity of the liquid phase in comparison to
the analysis by VP assay used for the evaluation of the volatile compound activity. DD experiments
showed a higher potency of TTO against Gram-negative bacteria than S. aureus. Regarding VP
assays, the in-vitro effectiveness of TTO in VP was lower than that by DD analysis; nevertheless,
TTO retained its activity against Gram-negatives, especially with regard to CR-Ab displaying 20 and
15 mm inhibition zone by means of DD and VP assays, respectively (Figure 1).
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Figure 1. Disk diffusion (panel A) and vapor phase (panel B) activity of TTO. MSSA:
Methicillin-susceptibility Staphylococcus aureus; MRSA: Methicillin-resistant Staphylococcus aureus;
ESBL: Extended Spectrum Beta-Lactamases; CS: Carbapenem-Susceptible; CR: Carbapenem-Resistant;
Kp: Klebsiella pneumoniae; Ab: Acinetobacter baumannii; Pa: Pseudomonas aeruginosa.

2.5. Time Kill Studies

In agreement with the MIC/MBC data, killing studies of TTO alone against MRSA showed
a concentration-dependent effect, with an absence of bacterial growth at concentration of 2%; on the
other hand, only a bacteriostatic effect was noted at the concentrations of 1% and 0.5% and no activity
was observed at 0.25% (Figure 2).

Molecules 2018, 23, x  5 of 14 

 

2.4. Disk Diffusion (DD) and VP Assay 

The DD assay was used to evaluate the antimicrobial activity of the liquid phase in comparison 
to the analysis by VP assay used for the evaluation of the volatile compound activity. DD experiments 
showed a higher potency of TTO against Gram-negative bacteria than S. aureus. Regarding VP assays, 
the in-vitro effectiveness of TTO in VP was lower than that by DD analysis; nevertheless, TTO retained 
its activity against Gram-negatives, especially with regard to CR-Ab displaying 20 and 15 mm inhibition 
zone by means of DD and VP assays, respectively (Figure 1). 

  
(A) (B) 

Figure 1. Disk diffusion (panel A) and vapor phase (panel B) activity of TTO. MSSA: Methicillin-
susceptibility Staphylococcus aureus; MRSA: Methicillin-resistant Staphylococcus aureus; ESBL: Extended 
Spectrum Beta-Lactamases; CS: Carbapenem-Susceptible; CR: Carbapenem-Resistant; Kp: Klebsiella 
pneumoniae; Ab: Acinetobacter baumannii; Pa: Pseudomonas aeruginosa. 

2.5. Time Kill Studies 

In agreement with the MIC/MBC data, killing studies of TTO alone against MRSA showed a 
concentration-dependent effect, with an absence of bacterial growth at concentration of 2%; on the 
other hand, only a bacteriostatic effect was noted at the concentrations of 1% and 0.5% and no activity 
was observed at 0.25% (Figure 2). 

 
Figure 2. Activity of TTO against MRSA at different concentrations throughout killing study. GC: Growth 
Control; MRSA: Methicillin-resistant Staphylococcus aureus. Dashed line represents bactericidal activity. 

MSSA 

MRSA  

E. c
oli

ESBL CS-K
p 

ESBL CR-K
p 

CR-A
b 

CR-Pa 
0

5

10

15

20

25

Di
am

et
er

 o
f i

nh
ib

iti
on

, m
m

MSSA 

MRSA 

E.co
li 

ESBL CS-K
p 

ESBL C
R-K

p 

CR-A
b 

CR-Pa 
0

5

10

15

20

25

Di
am

et
er

 o
f i

nh
ib

iti
on

, m
m

0 2 4 6 8 24
0
1
2
3
4
5
6
7
8
9

10

Time (h)

Lo
g1

0 
CF

U/
m

L GC

3% V/V TTO

2% V/V TTO

1% V/V TTO

0.5% V/V TTO

0.25% V/V TTO

Figure 2. Activity of TTO against MRSA at different concentrations throughout killing study.
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Interestingly, TTO associated with OXA was shown to lower the antibiotic MIC against MRSA,
which was resistant to all antimicrobial beta-lactams. Evaluation of bactericidal and synergistic activity
of TTO combined with OXA was therefore conducted at sub-inhibitory concentrations (Figure 3).
TTO and OXA alone at sub-inhibitory concentrations (0.25–0.5% and 1–2 µg/mL, respectively) were
not able to reduce the bacterial amount, whereas the combinations of TTO + OXA at the same
concentrations with the exception of 0.25% TTO + 1 µg/mL OXA, showed marked synergistic effects
and bactericidal activity against MRSA, with absence of any bacterial growth at 24 h (Figure 3).
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3. Discussion

The spread of multi-drug resistant bacteria is well recognized as an emergent global challenge,
given the paucity of active therapeutical options and the high rate of mortality [2]. Thus, alternatives
including natural substances are proposed as intriguing options for facing the problem of resistance
in bacteria [24].

Based on these considerations, in the present study the antimicrobial activity of a commercial
formulation of TTO was evaluated against S. aureus and several MDR Gram-negative bacteria.

This report demonstrates a remarkable bactericidal activity of TTO against all the tested MDR
Gram-negatives with absence of bacterial growth at concentrations ranging from 0.25% to 0.5% v/v
for E. coli, ESBL-CS-Kp, CR-Ab, and CR-Kp whereas a lower bactericidal activity (1% v/v) was found
for CR-Pa, in line with that observed in other studies and summarized by Carson et al., where most
bacteria were susceptible to TTO at concentrations of 1.0% or less and higher MICs were reported for
organisms such as P. aeruginosa [13].

To corroborate the TTO antimicrobial effectiveness, its synergistic activity was also investigated
in combination with sub-inhibitory concentrations of traditional antimicrobials commonly used as
a part of combination treatment against MDR Gram-negatives [25]. Among used antimicrobial MEM
(to which all the CR strains were resistant) and COL (to which both CS and CR-Kp were resistant)
a synergism was shown with all tested combinations, with FICI values lower than 0.5.

Other studies reported EOs’ synergistic activities when used in combination with
antibiotics [26–28]; nevertheless, to the best of our knowledge, this paper demonstrates for the first
time a potent antimicrobial activity of TTO, alone and in combination with different antimicrobials,
against clinically relevant MDR Gram-negatives strains (i.e., CR-Kp, CR-Ab, and CR-Pa) and even
PDR Kp, towards which the available therapeutic options are very limited or absent. In fact, previous
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studies investigated the activity of EOs other than TTO against ESBL producing Gram-negatives with
unknown sensitivity to carbapenems [24] or oregano EO against CR-Kp with unknown sensitivity
to colistin [29,30].

Thus, the results of the present study appear extremely promising for a potential clinical use of
TTO in the setting of infections caused by MDR Gram-negative microorganisms.

In addition, being aware that hospital pneumonia cases are usually caused by MDR Gram-negative
bacteria [31], the potency of TTO was also evaluated in the VP [32]. Even though the VP efficacy was
globally lower than that observed with the disk diffusion analysis (liquid phase), antibacterial activity
was retained against E. coli and both CS and CR-Kp whereas no activity was found with regard to
MSSA, MRSA, and CR-Pa. Interestingly, TTO in VP maintained an elevated activity towards CR-Ab,
thus corroborating the results obtained by Miao Li et al in their model of pulmonary delivery of tea
tree oil-b-cyclodextrin inclusion complexes [33]. It seems that no VP assays have yet been performed
against other MDR and PDR Gram-negatives. If confirmed, the observed effectiveness of TTO VP
against CR-Ab might have a critical clinical impact for the therapy of CR-Ab lung infection.

Taking in to consideration these inspiring results, additional efforts should be undertaken for the
implementation of TTO therapeutical use in the setting of MDR infections beyond cosmetics.

However, the irritant properties and the hydrophobicity of TTO might limit its clinical
application [34]. Although there have been reports of cutaneous and oral toxicity related to TTO,
its general toxicology (i.e., LD50) profile suggested that severe reactions would be extremely rare
in the absence of ingestion [35]. Others found the effect of TTO on cell viability as primarily dose
dependent, with significant cytotoxicity at concentrations of ≥10% and ≥50% for cell lines and whole
tissue, respectively [36].

To counterpart these limitations, herein it was observed that the remarkable antibacterial activity
was present at very low concentration and, when combined with commonly therapeutically used
antimicrobials, even at sub-inhibitory concentrations, thus making it reasonable to have further
investigations on the best TTO percentage to be used for clinical purpose. On the other hand, a recent
study performed in an animal model of bacterial and fungal pneumonia showed the efficacy of
inhalable TTO nanoemulsion as a promising and intriguing local therapy to overcome difficulties in
TTO formulation [37].

As well as for Gram-negative bacteria, local and systemic infections caused by MRSA represent
a therapeutical challenge for physicians [38]. The present investigation showed that the addition
of TTO at OXA sub-inhibitory concentrations was able to be reduced from 64 to 2 µg/mL its MIC,
being OXA one of the more active beta-lactam against S. aureus but to which MRSA is typically
resistant [39]. Killing studies confirmed that low concentrations of TTO (0.25–0.5% v/v) combined
with OXA at concentrations equal to (2 µg/mL) and just lower than (1 µg/mL), the breakpoint for
methicillin-susceptibility, obtained a potent concentration-dependent bactericidal and synergistic
activity, with absence of bacterial growth after 24 h of antibiotic challenge. Although the MIC/MBC
values of TTO against MSSA/MRSA were comparable with those obtained by a previous study [16],
the killing results were slightly different, possibly due to the different concentrations used for the
experiments (up to 3% compared with 5% v/v) [40]. Herein reported synergistic analyses confirmed
the indifference between TTO and VAN, as previously described [15], whereas the novelty of this
report is based on the observation (by both synergistic and killing studies) that the addition of TTO at
sub-inhibitory concentration indeed restored MRSA sensitivity to OXA. Based on literature survey,
no similar results have been yet described with TTO and MRSA and they appear to be crucial when
considering the possibility of combining TTO with beta-lactams for MRSA infection. In fact, the activity
of other EOs was evaluated against several MRSA strains [41,42] and the tendency of EOs to reduce
antibiotic resistance was observed, with the combination natural compounds–synthetic drugs inducing
the reversal of resistance in bacteria toward antibiotics such as penicillin [4], ampicillin/sulbactam [5],
carbapenems [43], and oxacillin [44]. The mode of action of antimicrobial combination leading to the
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synergism is still an area of active research and it is probably attributed to the perturbation of bacterial
membrane or the inhibition of PBP2a activity or its reduction [44] exerted by natural compounds.

Given the anti MRSA activity, the potential clinical application of TTO might reside on the local
administration of the drug (either at a fixed % v/v or vehiculated by the use of nanoparticles) for the
treatment of skin and soft tissue infections, including those occurring after surgery [35,45] or nasal
decolonization in the case of resistance to mupirocin or other treatments [46].

Because the reported differences in the antimicrobial activity of TTO could relate to the specific
composition of the volatile compounds in the TTO, one of the strengths of this report was the
combination of the chemical analysis of TTO components together with the evaluation of its
antimicrobial activity both in liquid and VP. In particular, it has been reported that the antimicrobial
activity of TTO is attributed mainly to terpinen-4-ol, which is the major component of the oil [47]
and exhibits a favorable hydrophobic/hydrophilic profile [47]. Several studies on terpinen-4-ol have
shown it to be a bactericidal agent. Ferrini et al. [48] reported its activity against strains resistant to
mupirocin, fusidic acid, vancomycin, methicillin, and linezolid. In their article the terpinen-4-ol
antistaphylococcal potency was found even higher than that of some antibiotics. In a different
report the antimicrobial potency of some TTO chemical components was performed, including
the terpinen-4-ol, by using disc diffusion and broth microdilution methods [13]. Terpinen-4-ol
compared to the other components was found active against all tested microorganisms including
Escherichia coli, Candida albicans, and Staphylococcus aureus. In the present study, the direct comparison
of the two analyses (liquid and VP) indicated a marked increase in the percentage of α-pinene and
a marked reduction in terpinen-4-ol percentage in the VP compared to that observed in the liquid
phase. This difference could be responsible for the higher biological effects of liquid TTO, especially
against Gram-positive bacteria. In addition, it is of note that the greatest effects were observed with
eucalyptol, a component often considered to have marginal antimicrobial activity. Even in the present
study, we confirmed that eucalyptol was highly represented in liquid as well as in VP, raising the
possibility that even if eucalyptol may not be one of the primary antimicrobial components, it might
contribute to the permeabilization of bacterial membranes and thus facilitate the entry of other and
more active components [47].

As expected, head space analysis showed that the lightest components (α-pinene, β-pinene)
were more represented than the heaviest ones (terpinen-4-ol, α-terpineol). This phenomenon was
particularly evident for α-pinene, leading to the speculation that it might contribute to the high
antibacterial activity of TTO in VP against CR-Ab. However, the presence of other trace components
could also be important, given that they could act synergistically to exert the antimicrobial action.

Taken together, these findings support the hypothesis that TTO comprise a large number of
components and it is likely that their mode of action involves several targets in the bacterial cell [49].
The observed different antimicrobial activity might depend on the different percentage of TTO
components in liquid as well in VP assays, suggesting that additional investigations on the activity of
a specific component against a specific microorganism should be further encouraged.

Finally, it should be noted that the TTO used in the present study was a commercial formulation;
thus, the results herein described might be an expression of one specific TTO and not of all TTOs.
Nevertheless, in order to overcome this limitation, the chemical composition of the used commercial
formulation was widely investigated, both in liquid and VP.

4. Materials and Method

4.1. Antimicrobials Agents and TTO

Antimicrobial agents were provided as purified powder by the manufacturer (Sigma Aldrich,
Rome, Italy). Stock solutions at different concentrations were prepared in sterile and pyrogen-free 0.9%
saline or water, according to the manufacturer’s instructions. The activity of the tested antimicrobials
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was expressed as µg/mL whereas the activity of TTO was expressed as %v/v. The used TTO was
commercially acquired as a pure and natural commercial formulation (ESPERIS S. P. A. Milan, Italy).

4.2. TTO Chemical Composition Analysis

The GC/MS analysis was carried out with a GC-MS and GC-FID using a turbomass Clarus
500 GC-MS/GC-FID from Perkin Elmer instruments (Waltham, MA, USA). A Stabilwax fused-silica
capillary column (Restek, Bellefonte, PA, USA) (60 m × 0.25 mm, 0.25 mm film thickness) was used
with helium as carrier gas (1.0 mL/min). GC oven temperature was kept at 60 ◦C for 5 min and
programmed to 220 ◦C at a rate of 5 ◦C/min and kept constant at 220 ◦C for 30 min. Solvent delay
0–2 min and scan time 0.2 s. MS was taken at 70 eV. Mass range was from 30 to 350 m/z. 1 µL of
TTO was diluted in 1 mL of methanol and 1 µL of the solution was injected into the GC injector at
a temperature of 280 ◦C.

To investigate TTO volatile component, a Perkin-Elmer Headspace (HS) Turbomatrix 40
autosampler connected to a Clarus 500 GC-MS was used for headspace analysis. To develop an
optimal headspace procedure for the determination of volatile organic compounds (VOCs) from TTO,
essential parameters such as equilibration time and temperature were adjusted.

The relative percentages for quantification of the components were calculated by electronic
integration of the GC-FID peak areas. Identification of the constituents was performed based on
MS library search (Nist MS Search Ver. 2.0 and Wiley 9th edition). Linear retention indices (LRI) of
each compound were calculated using a mixture of aliphatic hydrocarbons (C8-C30, Ultrasci) injected
directly into the GC injector with the same temperature program as reported above. Only chemical
components with percentages higher that 0.1% were investigated (Table 1).

4.3. Bacterial Strains

For antimicrobial activity determination, we used the following microorganisms: MSSA
(ATCC 29213), E. coli (ATCC 25922), MRSA (clinical strain isolated from skin), ESBL-CS-Kp (clinical
strain isolated from urine), ESBL-CR-Kp (clinical strain isolated from urine), CR-Ab (clinical strain
isolated from sputum) and CR-Pa (clinical strain isolated from bronchoalveolar lavage).

After bacterial storage on cryovial bead preservation system (Microbank; Pro-Lab Diagnostics,
Richmond Hill, ON, Canada) at −80 ◦C, inoculum was prepared by spreading one cryovial bead on
blood agar plate and incubating overnight at 37 ◦C. One colony was re-suspended in 5 mL tryptic
soy broth (TSB) and incubated at 37 ◦C without shaking. Overnight cultures were then adjusted to
a turbidity of 0.5 McFarland, corresponding to ≈1 × 108 CFU/mL.

4.4. Antimicrobial Activity

MIC and MBC of TTO, amikacin (AMK), cefazolin (CFZ), meropenem (MEM), oxacillin (OXA),
colistin (COL), rifampin (RIF), and vancomicin (VAN) were determined by using the macro dilution
broth method [50]. Briefly, two-fold serial dilutions of each antimicrobial agent and TTO were prepared
in 2 mL Mueller Hinton broth (MHB) in borosilicate glass tubes and incubated for 24 h at 37 ◦C.
MIC was defined as the lowest concentration of antibiotic that completely inhibited visible growth
whereas bactericidal activity was defined as ≥3-log10 CFU/ml reduction of the initial bacterial count
after 24 h of incubation. The used bacterial inoculum was ~5 × 105 CFU/mL.

4.5. Synergistic Activity of TTO Combined with Antimicrobial Agents

Checkerboard method was used to investigate the synergism of the following combinations:
TTO + AMK/CFZ/OXA/VAN/RIF for MSSA/MRSA; TTO + AMK/MEM for E. coli;
TTO + MEM/COL for CR-Ab; TTO + MEM/AMK/COL for CR-Pa; TTO + AMK/MEM/COL
for ESBL-CS-Kp and CR-Kp. A 96-well microtitre plate containing TTO/antibiotic combinations
at different concentrations (1–0.5–0.25% v/v and 0.5, 0.25, 0.125 × MIC, respectively) was used to
perform checkerboard synergy testing. Wells containing a final inoculum of ~5 × 105 CFU/mL were
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incubated at 37 ◦C for 24 h under static conditions in MHB. The fractional inhibitory concentration
index (FICI) of each combination was defined as: ∑FIC: FICA + FICB = MICA + B/MICAalone + MICB
+ A/MICBalone. Synergism was defined as FICI ≤ 0.5 whereas FICI > 0.5 but <4 were considered
as indifferent.

4.6. DD and VP Assay

The antimicrobial activity of TTO was compared against the same selection of antibiotic-resistant
and -sensitive bacterial strains described above by using DD and VP assays.

For DD analysis, 10 µL of absolute (100% v/v) TTO were inoculated onto individual 6-mm filter
paper discs and placed on Mueller Hinton Agar (MHA) plates containing ~1.5 × 108 CFU/mL of the
tested bacteria whereas for VP, TTO-impregnated (concentration as above) discs were placed on the lid
of the petri dish and covered with parafilm, as previously described [51] so that only the TTO vapor
fraction was responsible for organism inhibition.

The antimicrobial effect was assessed by measuring the inhibition zone (expressed as mm) after
24 h of incubation at 37 ◦C.

4.7. Time-Kill Studies

Given the unexpected effect of TTO in lowering OXA MIC against MRSA, which is resistant to all
beta-lactam antimicrobials, the activity of TTO alone and in combination with OXA was evaluated by
time-kill studies performed in the logarithmic growth phase using an initial inoculum of ~5 × 105 CFU/mL.

Killing curves were performed in boro-silicate glass tubes in a final volume of 10 mL CAMHB
which were further incubated at 37 ◦C. At 2, 4, 6, 8, and 24 h time points, 1 mL aliquots were
sampled and washed with 0.9% saline solution in order to prevent the antibiotic carry-over effect.
Ten-fold dilutions were then plated on Muller-Hinton agar and the number of CFUs was determined.
Medium without antibiotics was used as growth control. Bactericidal activity was defined as ≥99.9%
(i.e., ≥3-log10 CFU/mL) reduction of the initial bacterial count at each time point. Synergy was
defined as a ≥100-fold decrease in CFU/mL between the combination and its most active constituent
at the same concentration after 24 h, with the number of surviving organisms in the presence of the
combination ≥100-fold CFU/mL below the starting inoculum.

For TTO alone we used 3%, 2%, 1%, 0.5%, and 0.25% v/v whereas when tested in combination with
OXA, we used the following concentrations: OXA 2 µg/mL (0.06 × MIC), OXA 1 µg/mL (0.03 × MIC),
OXA 2 µg/mL (0.06 × MIC) + TTO 0.5%, OXA 2 µg/mL (0.06 × MIC) + TTO 0.25%, OXA 1 µg/mL
(0.03 × MIC) + TTO 0.25%, OXA 1 µg/mL (0.03 × MIC) + TTO 0.25%.

All in-vitro experiments were performed in duplicate.

5. Conclusions

In conclusion (a) for the first time a significant potency of TTO (alone and in combination) was
demonstrated against a selection of clinically relevant MDR/PDR Gram-negative microorganisms;
(b) the antibacterial evaluation of TTO was performed both in liquid and VP, making it reasonable to
be used as a possible inhalatory for lung infections, especially those caused by CR-Ab; (c) the activity
of TTO/OXA combination against MRSA at sub-inhibitory concentrations might be expression of
a restored susceptibility to OXA induced by TTO, with obvious clinical implications.

Taken together, the herein reported results might provide the basis for a possible role of TTO
as part of non-conventional regimens against both MSSA/MRSA and Gram-negative MDR/PDR
microorganisms. However, since several different varieties of TTO have been described so far [52] and
given that in the present study only one type of TTO was thoroughly investigated, the results of the
present research might be considered as a potential starting-point for additional studies on the activity
of TTO against multi-drug resistant bacteria.
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Abbreviations

MDR multidrug-resistant
CR carbapenem-resistant
EOs essential oils
TTO Tea tree oil
MSSA methicillin-susceptible Staphylococus aureus
MRSA methicillin-resistant Staphylococus aureus
ESBL extended-spectrum beta lactamases
CS carbapenem-sensitive
Kp Klebsiella pneumoniae
Ab Acinetobacter baumannii
Pa Pseudomonas aeruginosa
HS Headspace
VOCs volatile organic compounds
LRI Linear retention indices
TSB tryptic soy broth
MIC minimal inhibitory concentration
MBC minimal bactericidal concentration
AMK amikacin
CFZ cefazolin
MEM meropenem
OXA oxacillin
COL colistin
RIF rifampin
VAN vancomicin
MHB Mueller Hinton Broth
FICI fractional inhibitory concentration index
DD disk diffusion
VP vapour phase
MHA Mueller Hinton Agar
CFUs Colony Forming Units
PDR pan-drug resistant
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