48 research outputs found

    The dust envelope of the pre-planetary nebula IRAS19475+3119

    Full text link
    We present the spectral energy distribution (SED) of the pre-planetary nebula, IRAS 19475+3119 (I19475), from the optical to the far-infrared. We identify emission features due to crystalline silicates in the ISO SWS spectra of the star. We have fitted the SED of I19475 using a 1-D radiative transfer code, and find that a shell with inner and outer radii of 8.8X10^{16} and 4.4X10^{17}cm, and dust temperatures ranging from about 94K to 46K provide the best fit. The mass of this shell is greater than/equal to 1[34cm^{2}g^{-1}/kappa(100micron)][delta/200]M_Sun, where kappa(100micron) is the 100micron dust mass absorption coefficient (per unit dust mass), and delta is the gas-to-dust ratio. In agreement with results from optical imaging and millimeter-wave observations of CO emission of I19475, our model fits support an r^{-3} density law for its dust shell, with important implications for the interaction process between the fast collimated post-AGB winds and the dense AGB envelopes which results in the observed shapes of PPNs and PNs. We find that the observed JCMT flux at sub-millimeter wavelengths (850micron) is a factor ~ 2 larger than our model flux, suggesting the presence of large dust grains in the dust shell of I19475 which are not accounted for by our adopted standard MRN grain size distribution.Comment: 38 pages, 8 figures. Accepted for publication in Ap

    A Spitzer IRS Spectral Atlas of Luminous 8 micron Sources in the Large Magellanic Cloud

    Full text link
    We present an atlas of Spitzer Space Telescope Infrared Spectrograph (IRS) spectra of highly luminous, compact mid-infrared sources in the Large Magellanic Cloud. Sources were selected on the basis of infrared colors and 8 micron (MSX) fluxes indicative of highly evolved, intermediate- to high-mass stars with current or recent mass loss at large rates. We determine the chemistry of the circumstellar envelope from the mid-IR continuum and spectral features and classify the spectral types of the stars. In the sample of 60 sources, we find 21 Red Supergiants (RSGs), 16 C-rich Asymptotic Giant Branch (AGB) stars, 11 HII regions, 4 likely O-rich AGB stars, 4 Galactic O-rich AGB stars, 2 OH/IR stars, and 2 B[e] supergiants with peculiar IR spectra. We find that the overwhelming majority of the sample AGB stars (with typical IR luminosities ~1.0E4 L_sun) have C-rich envelopes, while the O-rich objects are predominantly luminous RSGs with L_IR ~ 1.0E5 L_sun. We determine mean bolometric corrections to the stellar K-band flux densities and find that for carbon stars, the bolometric corrections depend on the infrared color, whereas for RSGs, the bolometric correction is independent of IR color. Our results reveal that objects previously classified as PNe on the basis of IR colors are in fact compact HII regions with very red IRS spectra that include strong atomic recombination lines and PAH emission features. We demonstrate that the IRS spectral classes in our sample separate clearly in infrared color-color diagrams that use combinations of 2MASS data and synthetic IRAC/MIPS fluxes derived from the IRS spectra. On this basis, we suggest diagnostics to identify and classify, with high confidence levels, IR-luminous evolved stars and HII regions in nearby galaxies using Spitzer and near-infrared photometry.Comment: 46 pages, 9 figures; accepted for publication in AJ; abstract abridge

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Susceptibility of Anopheles culicifacies species A and B to Plasmodium vivax and Plasmodium falciparum as determined by immunoradiometric assay

    No full text
    We have used a two-site immunoradiometric assay and species-specific antisporozpite monoclonal antibodies to determine the relative roles that sibling species A and B of the Anopheles culicifacies complex play in malaria transmission in western Uttar Pradesh, India. The results unequivocally establish species A as the primary vector of both Plasmodium vivax and P. falciparum in this area. Our results indicate active transmission of P. vivax from May to October and of P. falciparum from August to December. The identification of species A as the primary malaria vector in northern India will now allow suitable malaria control strategies to be designed

    Modulation by angiotensin II of isoproterenol-induced cAMP production in preglomerular microvascular smooth muscle cells from normotensive and genetically hypertensive rats

    No full text
    ABSTRACT The objectives of the present study were to determine whether angiotensin II (Ang II) modifies beta-adrenoceptor-induced cAMP production in preglomerular microvascular smooth muscle cells (PMVSMCs), to determine whether the Ang II/betaadrenoceptor interaction on cAMP production differs in PMVSMCs from normotensive Wistar-Kyoto (WKY) rats vs. PMVSMCs from spontaneously hypertensive rats (SHR), and to elucidate the mechanism of Ang II/beta-adrenoceptor interactions on cAMP production in PMVSMCs. In cultured PMVSMCs, isoproterenol increased cAMP levels and this effect was markedly enhanced by Ang II. The Ang II enhancement of isoproterenol-induced cAMP was significantly greater in SHR PMVSMCs compared with WKY PMVSMCs. Neither inhibition of calcineurin with FK506, inhibition of calcium-calmodulin with W-7 and calmidazolium, nor inhibition of G i proteins with pertussis toxin attenuated Ang II enhancement of isoproterenolinduced cAMP in PMVSMCs from either SHR or WKY rats. Moreover, the effect of Ang II on isoproterenol-induced cAMP was not mimicked by alpha-2 adrenoceptor stimulation. In contrast, chelation of intracellular calcium with BAPTA-AM attenuated, increasing intracellular calcium with A23187 augmented, and inhibition of protein kinase C with either calphostin C or chelerythrine chloride abolished Ang II enhancement of isoproterenol-induced cAMP. We conclude that in cultured PMVSMCs Ang II enhances the cAMP response to beta-adrenoceptor agonists via a mechanism that involves coincident activation of adenylyl cyclase by stimulatory G proteins and protein kinase C. Thus, protein kinase C-mediated activation of adenylyl cyclase may attenuate Ang II-induced vasoconstriction in the renal microcirculation by raising the intracellular levels of cAMP, and this mechanism may be augmented in genetic hypertension. Several studies demonstrate that Ang II enhances the formation of cAMP in response to a variety of agonists. Ang II potentiation of cAMP formation has also been observed in other cell types. Although Ang II enhances agonist-stimulated cAMP formation in smooth muscle cells from large conduit arteries, whether this occurs in smooth muscle cells from resistance vessels is unknown. In this regard, in the perfused rat kidney, Ang II inhibits rather than stimulates isoproterenol-induced cAMP forma

    Time-Resolved Observations of Jupiter's Far-Ultraviolet Aurora

    No full text
    Simultaneous imaging and spectroscopic observations of Jupiter's far-ultraviolet aurora covering half a jovian rotation were made on 31 May 1994. The Hubble Space Telescope Wide Field Planetary Camera 2 images revealed dramatic and rapidly changing auroral features, including discrete longitudinal structures along the auroral ovals, with variable contrast; a poleward offset in a north oval sector, showing equatorward motion near dusk; emissions polewards of the ovals, apparently co-rotating; and a bright event developing near the dawn limb. Viewing geometry effects explain the rotational intensity modulation observed by the International Ultraviolet Explorer, without intrinsic longitudinal asymmetries
    corecore