8 research outputs found

    BIO-CONTROL OF MULTIPLE DRUG-RESISTANT UROPATHOGENS USING MEDICINAL PLANT EXTRACTS

    Get PDF
    Objective: The present study was conducted to evaluate the potential of some medicinal plants used in Ayurveda in treating multiple drug-resistant human pathogens causing urinary tract infections (UTIs). Methods: Dried parts of six medicinal plants used in Ayurveda for treating UTI were Soxhlet extracted, and the extract was concentrated in vacuo. Various concentrations of the extract were tested for antimicrobial activity against three clinical isolates of multiple drug-resistant bacteria causing UTI. Results: Preliminary results showed the promising antibacterial effect of plant extracts. Escherichia coli, the most common pathogen associated with UTI, was susceptible to aqueous extracts of all the six medicinal plants. Conclusion: This study concluded that the medicinal plants used in Ayurveda to treat UTIs are effective against multiple drug-resistant uropathogens. Further study in this regard may lead to the identification of novel antimicrobial agent for treating multiple drug-resistant urinary tract pathogens

    Regio- and Chemoselective Access to Dihydrothiophenes and Thiophenes via Halogenation/Intramolecular C(sp<sup>2</sup>)–H Thienation of α‑Allyl Dithioesters at Room Temperature

    No full text
    An operationally simple, practical, and efficient cascade approach employing α-allyl dithioesters and NBS/NIS has been achieved to access a series of dihydrothiophenes and thiophenes containing diverse functional groups of different electronic and steric natures in good to excellent yields at room temperature in open air. The reaction proceeds via the electrophilic addition of a halogen source (NBS/NIS) to an allylic double bond, followed by intramolecular regio- and chemoselective S-cyclization. This protocol avoids potential toxicity and tedious work-up conditions, and features easy synthesis from readily available starting materials under catalyst-free conditions. Furthermore, 4,5-dihydrothiophenes were aromatized to thiophenes by treatment with KOH in DMF at room temperature. A probable mechanism for the formation of dihydrothiophenes and thiophenes from α-allyl dithioesters has been suggested. Notably, a large-scale experiment and the transformations of products indicated the potential utility of this reaction compared to competing processes for the synthesis of 4,5-dihydrothiophenes and thiophenes

    Regio- and Chemoselective Access to Dihydrothiophenes and Thiophenes via Halogenation/Intramolecular C(sp<sup>2</sup>)–H Thienation of α‑Allyl Dithioesters at Room Temperature

    No full text
    An operationally simple, practical, and efficient cascade approach employing α-allyl dithioesters and NBS/NIS has been achieved to access a series of dihydrothiophenes and thiophenes containing diverse functional groups of different electronic and steric natures in good to excellent yields at room temperature in open air. The reaction proceeds via the electrophilic addition of a halogen source (NBS/NIS) to an allylic double bond, followed by intramolecular regio- and chemoselective S-cyclization. This protocol avoids potential toxicity and tedious work-up conditions, and features easy synthesis from readily available starting materials under catalyst-free conditions. Furthermore, 4,5-dihydrothiophenes were aromatized to thiophenes by treatment with KOH in DMF at room temperature. A probable mechanism for the formation of dihydrothiophenes and thiophenes from α-allyl dithioesters has been suggested. Notably, a large-scale experiment and the transformations of products indicated the potential utility of this reaction compared to competing processes for the synthesis of 4,5-dihydrothiophenes and thiophenes

    Pyrolysis and combustion behavior of few high-ash Indian coals

    No full text
    In this study, three high-ash Indian sub-bituminous coals of different thermal maturities from three different open cast mines of Raniganj basin, eastern India, were studied to understand their combustion and pyrolysis behavior. The combustion analyses were performed under three different heating rates (5°C, 10°C, and 15°C/min). From the thermograms of TG-DTG pyrolysis curves, it was observed that the overall pyrolysis reaction can be deduced into four different temperature regions with each region showing unique properties, and those regions are inherent moisture loss, prior to primary pyrolysis, primary pyrolysis, and secondary pyrolysis regions. The main pyrolysis reaction occurs in the primary pyrolysis region for all the samples but a significant devolatilization has also been seen for the early oil window mature noncoking coal in the secondary pyrolysis region. The kinetic parameters were also evaluated for both combustion and pyrolysis analysis. X-ray diffraction revealed that this sample consists of a significant amount of siderite and pyrite, and consequently showed distinct behavior. It was observed that the pyrolysis properties and kinetics were closely related to their complex mechanisms and reactions. Rock-Eval pyrolysis also confirmed the presence of siderite in the sample, which decomposed simultaneously with the organic-matter during pyrolysis

    Coal combustion analysis using Rock-Eval: importance of S4-Tpeak

    No full text
    The Rock-Eval technique has been conventionally used for source-rock analysis. In this work we document the importance of Rock-Eval S4 oxidation graphics and S4-Tpeak as indicators for coal reactivity and thermal maturity. Two non-coking coals (lower maturity), one coking coal (higher maturity), and one jhama (intrusion-induced metamorphosed coal), were collected and studied in terms of their reactivity and combustion properties. Our results indicate that Rock-Eval S4-Tpeak can be convincingly used to decipher the thermal maturity level of a coal sample. The two non-coking coals owing to their higher reactivity and corresponding lower activation energies, combusted at lower temperatures, almost entirely below 650 °C, and showed lower Rock-Eval S4-Tpeak. The coking coal sample on the other hand due to its higher thermal maturity level and lower reactivity, combusted at higher temperature, showing higher S4-Tpeak. While the S2 Tmax showed higher maturity for the coking coal than the jhama, the S4 oxidation graphics and S4-Tpeak clearly revealed higher thermal maturity of the jhama relative to the other samples. With increasing sample weights, the S4CO2 curves were observed to be broader, and consequently the S4-Tpeak was observed to be higher and erroneous, the errors being more for the more-mature coking coal and jhama. With lowering sample weights, the curves became tighter and the S4-Tpeak became lower and more precise. Parameters calculated using TG-DTG-DSC were observed to complement the data from Rock-Eval oxidation-stage, and revealed higher maturity, less reactivity, higher temperatures of ignition and burn out for the jhama, followed by the coking coal. Our results also indicate the suitability of applying Rock-Eval for combustion-profiling of coals, beyond source-rock characterization and CBM reservoir analysis

    Comprehensive chemo-profiling of coumarins enriched extract derived from Aegle marmelos (L.) Correa fruit pulp, as an anti-diabetic and anti-inflammatory agent

    No full text
    Aegle marmelos (L.) Correa is an Indian medicinal plant known for its vast therapeutic activities. In Ayurveda, the plant is known to balance “vata,” “pitta,” and “kapha” dosh. Recent studies suggest anti-inflammatory, anti-microbial, and anti-diabetic potential but lack in defining the dosage over the therapeutic activities. This study aims to determine the chemical profile of Aegle marmelos fruit extract; identification, enrichment, and characterization of the principal active component(s) having anti-inflammatory and anti-diabetic potential. Targeted enrichment of total coumarins, focusing on marmelosin, marmesin, aegeline, psoralen, scopoletin, and umbelliferone, was done from Aegle marmelos fruit pulp, and characterized using advanced high-throughput techniques. In vitro and in silico anti-diabetic and anti-inflammatory activities were assessed to confirm their efficacy and affinity as anti-diabetic and anti-inflammatory agents. The target compounds were also analysed for toxicity by in silico ADMET study and in vitro MTT assay on THP-1 and A549 cell lines. The coumarins enrichment process designed, was found specific for coumarins isolation as it resulted into 48.61% of total coumarins enrichment, which includes 31.2% marmelosin, 8.9% marmesin, 4% psoralen, 2% scopoletin, 1.7% umbelliferone, and 0.72% aegeline. The quantification with HPTLC and qNMR was found to be correlated with the HPLC assay results. The present study validates the potential use of Aegle marmelos as an anti-inflammatory and anti-diabetic agent. Coumarins enriched from the plant fruit have good therapeutic activity and can be used for Phytopharmaceutical ingredient development. The study is novel, in which coumarins were enriched and characterized by a simple and sophisticated methodology

    Carbon nitride, metal nitrides, phosphides, chalcogenides, perovskites and carbides nanophotocatalysts for environmental applications

    No full text
    corecore