14 research outputs found

    Folder by ICAR-KVK, Kolar

    No full text
    Huli, javalu savalu mattu kshaara mannugala nirvahane - KVK, KolarHuli, javalu savalu mattu kshaara mannugala nirvahaneNot Availabl

    Freeze-out radii extracted from three-pion cumulants in pp, p–Pb and Pb–Pb collisions at the LHC

    No full text
    In high-energy collisions, the spatio-temporal size of the particle production region can be measured using the Bose–Einstein correlations of identical bosons at low relative momentum. The source radii are typically extracted using two-pion correlations, and characterize the system at the last stage of interaction, called kinetic freeze-out. In low-multiplicity collisions, unlike in high-multiplicity collisions, two-pion correlations are substantially altered by background correlations, e.g. mini-jets. Such correlations can be suppressed using three-pion cumulant correlations. We present the first measurements of the size of the system at freeze-out extracted from three-pion cumulant correlations in pp, p–Pb and Pb–Pb collisions at the LHC with ALICE. At similar multiplicity, the invariant radii extracted in p–Pb collisions are found to be 5–15% larger than those in pp, while those in Pb–Pb are 35–55% larger than those in p–Pb. Our measurements disfavor models which incorporate substantially stronger collective expansion in p–Pb as compared to pp collisions at similar multiplicity

    Multiplicity dependence of jet-like two-particle correlation structures in p–Pb collisions at √sNN=5.02 TeV

    No full text
    Two-particle angular correlations between unidentified charged trigger and associated particles are measured by the ALICE detector in p–Pb collisions at a nucleon–nucleon centre-of-mass energy of 5.02 TeV. The transverse-momentum range 0.7 < pT,assoc < pT,trig < 5.0 GeV/c is examined, to include correlations induced by jets originating from low momentum-transfer scatterings (minijets). The correlations expressed as associated yield per trigger particle are obtained in the pseudorapidity range |η| < 0.9. The near-side long-range pseudorapidity correlations observed in high-multiplicity p–Pb collisions are subtracted from both near-side short-range and away-side correlations in order to remove the non-jet-like components. The yields in the jet-like peaks are found to be invariant with event multiplicity with the exception of events with low multiplicity. This invariance is consistent with the particles being produced via the incoherent fragmentation of multiple parton–parton scatterings, while the yield related to the previously observed ridge structures is not jet-related. The number of uncorrelated sources of particle production is found to increase linearly with multiplicity, suggesting no saturation of the number of multi-parton interactions even in the highest multiplicity p–Pb collisions. Further, the number scales only in the intermediate multiplicity region with the number of binary nucleon–nucleon collisions estimated with a Glauber Monte-Carlo simulation

    Production of charged pions, kaons and protons at large transverse momenta in pp and Pb–Pb collisions at √sNN = 2.76 TeV

    No full text
    Transverse momentum spectra of π±, K± and p(p¯) up to pT = 20 GeV/c at mid-rapidity in pp, peripheral (60–80%) and central (0–5%) Pb–Pb collisions at √sNN = 2.76 TeV have been measured using the ALICE detector at the Large Hadron Collider. The proton-to-pion and the kaon-to-pion ratios both show a distinct peak at pT ≈ 3 GeV/c in central Pb–Pb collisions. Below the peak, pT 10 GeV/c particle ratios in pp and Pb–Pb collisions are in agreement and the nuclear modification factors for π±, K± and p(p¯) indicate that, within the systematic and statistical uncertainties, the suppression is the same. This suggests that the chemical composition of leading particles from jets in the medium is similar to that of vacuum jets
    corecore