15 research outputs found

    Noninvasive Risk Stratification of Lung Adenocarcinoma using Quantitative Computed Tomography

    Get PDF
    IntroductionLung cancer remains the leading cause of cancer-related deaths in the United States and worldwide. Adenocarcinoma is the most common type of lung cancer and encompasses lesions with widely variable clinical outcomes. In the absence of noninvasive risk stratification, individualized patient management remains challenging. Consequently a subgroup of pulmonary nodules of the lung adenocarcinoma spectrum is likely treated more aggressively than necessary.MethodsConsecutive patients with surgically resected pulmonary nodules of the lung adenocarcinoma spectrum (lesion size ⩽3 cm, 2006–2009) and available presurgical high-resolution computed tomography (HRCT) imaging were identified at Mayo Clinic Rochester. All cases were classified using an unbiased Computer-Aided Nodule Assessment and Risk Yield (CANARY) approach based on the quantification of presurgical HRCT characteristics. CANARY-based classification was independently correlated to postsurgical progression-free survival.ResultsCANARY analysis of 264 consecutive patients identified three distinct subgroups. Independent comparisons of 5-year disease-free survival (DFS) between these subgroups demonstrated statistically significant differences in 5-year DFS, 100%, 72.7%, and 51.4%, respectively (p = 0.0005).ConclusionsNoninvasive CANARY-based risk stratification identifies subgroups of patients with pulmonary nodules of the adenocarcinoma spectrum characterized by distinct clinical outcomes. This technique may ultimately improve the current expert opinion-based approach to the management of these lesions by facilitating individualized patient management

    Quantitative Stratification of Diffuse Parenchymal Lung Diseases

    No full text
    <div><p>Diffuse parenchymal lung diseases (DPLDs) are characterized by widespread pathological changes within the pulmonary tissue that impair the elasticity and gas exchange properties of the lungs. Clinical-radiological diagnosis of these diseases remains challenging and their clinical course is characterized by variable disease progression. These challenges have hindered the introduction of robust objective biomarkers for patient-specific prediction based on specific phenotypes in clinical practice for patients with DPLD. Therefore, strategies facilitating individualized clinical management, staging and identification of specific phenotypes linked to clinical disease outcomes or therapeutic responses are urgently needed. A classification schema consistently reflecting the radiological, clinical (lung function and clinical outcomes) and pathological features of a disease represents a critical need in modern pulmonary medicine. Herein, we report a quantitative stratification paradigm to identify subsets of DPLD patients with characteristic radiologic patterns in an unsupervised manner and demonstrate significant correlation of these self-organized disease groups with clinically accepted surrogate endpoints. The proposed consistent and reproducible technique could potentially transform diagnostic staging, clinical management and prognostication of DPLD patients as well as facilitate patient selection for clinical trials beyond the ability of current radiological tools. In addition, the sequential quantitative stratification of the type and extent of parenchymal process may allow standardized and objective monitoring of disease, early assessment of treatment response and mortality prediction for DPLD patients.</p></div

    The correspondence of fibrotic and obstructive clusters with established indices and disease classification.

    No full text
    <p>The Gender, Age and Physiology (GAP) based one-year mortality predictions for clusters 1, 2 and 3 in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0093229#pone-0093229-g003" target="_blank">Figure 3</a> (A). The distribution of the old GOLD category (B) and new GOLD category (C) distribution across the obstructive clusters: 6, 7, 8, 9 and 10. The mean distribution of BODE indices across the obstructive clusters (D) and, the mean score distribution of SGRQ patient questionnaire scores of patients across all the clusters (E). The number of samples available in each cluster is noted in the horizontal axis. The error bars indicate the standard error of mean.</p

    1322 LTRC patients represented as glyphs.

    No full text
    <p>The classified parenchymal patterns are represented in the indicated colors. The radius of the glyphs is proportional to the lung volumes; the COPD cases with extensive low attenuation areas likely due to emphysema are visually larger than more normal or fibrotic cases with considerable regions of reticular or honeycombing.</p

    The ten stratified groups of 1322 patients represented as glyphs.

    No full text
    <p>The groups were the result of quantitative unsupervised clustering based on dissimilarity metric that captures the distribution of classified parenchymal patterns.</p
    corecore