17,822 research outputs found

    A polynomial time approximation scheme for computing the supremum of Gaussian processes

    Full text link
    We give a polynomial time approximation scheme (PTAS) for computing the supremum of a Gaussian process. That is, given a finite set of vectors VRdV\subseteq\mathbb{R}^d, we compute a (1+ε)(1+\varepsilon)-factor approximation to EXNd[supvVv,X]\mathop {\mathbb{E}}_{X\leftarrow\mathcal{N}^d}[\sup_{v\in V}|\langle v,X\rangle|] deterministically in time poly(d)VOε(1)\operatorname {poly}(d)\cdot|V|^{O_{\varepsilon}(1)}. Previously, only a constant factor deterministic polynomial time approximation algorithm was known due to the work of Ding, Lee and Peres [Ann. of Math. (2) 175 (2012) 1409-1471]. This answers an open question of Lee (2010) and Ding [Ann. Probab. 42 (2014) 464-496]. The study of supremum of Gaussian processes is of considerable importance in probability with applications in functional analysis, convex geometry, and in light of the recent breakthrough work of Ding, Lee and Peres [Ann. of Math. (2) 175 (2012) 1409-1471], to random walks on finite graphs. As such our result could be of use elsewhere. In particular, combining with the work of Ding [Ann. Probab. 42 (2014) 464-496], our result yields a PTAS for computing the cover time of bounded-degree graphs. Previously, such algorithms were known only for trees. Along the way, we also give an explicit oblivious estimator for semi-norms in Gaussian space with optimal query complexity. Our algorithm and its analysis are elementary in nature, using two classical comparison inequalities, Slepian's lemma and Kanter's lemma.Comment: Published in at http://dx.doi.org/10.1214/13-AAP997 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Implications of Anticipated Regret and Endogenous Beliefs for Equilibrium Asset Prices: A Theoretical Framework

    Get PDF
    This paper builds upon Suryanarayanan (2006a) and further investigates the implications of the model of Anticipated Regret and endogenous beliefs based on the Savage (1951) Minmax Regret Criterion for equilibrium asset pricing. A decision maker chooses an action with state contingent consequences but cannot precisely assess the true probability distribution of the state. She distrusts her prior about the true distribution and surrounds it with a set of alternative but plausible probability distributions. The decision maker minimizes the worst expected regret over all plausible probability distributions and alternative actions, where regret is the loss experienced when the decision maker compares an action to a counterfactual feasible alternative for a given realization of the state. We first study the Merton portfolio problem and illustrate the effects of anticipated regret on the sensitivity of portfolio rules to asset returns.We then embed the model in a version of the Lucas (1978) economy. We characterize asset prices with distorted Euler equations and analyze the implications for the volatility puzzles and Euler pricing errors puzzles.

    Moment-Matching Polynomials

    Full text link
    We give a new framework for proving the existence of low-degree, polynomial approximators for Boolean functions with respect to broad classes of non-product distributions. Our proofs use techniques related to the classical moment problem and deviate significantly from known Fourier-based methods, which require the underlying distribution to have some product structure. Our main application is the first polynomial-time algorithm for agnostically learning any function of a constant number of halfspaces with respect to any log-concave distribution (for any constant accuracy parameter). This result was not known even for the case of learning the intersection of two halfspaces without noise. Additionally, we show that in the "smoothed-analysis" setting, the above results hold with respect to distributions that have sub-exponential tails, a property satisfied by many natural and well-studied distributions in machine learning. Given that our algorithms can be implemented using Support Vector Machines (SVMs) with a polynomial kernel, these results give a rigorous theoretical explanation as to why many kernel methods work so well in practice

    A PRG for Lipschitz Functions of Polynomials with Applications to Sparsest Cut

    Full text link
    We give improved pseudorandom generators (PRGs) for Lipschitz functions of low-degree polynomials over the hypercube. These are functions of the form psi(P(x)), where P is a low-degree polynomial and psi is a function with small Lipschitz constant. PRGs for smooth functions of low-degree polynomials have received a lot of attention recently and play an important role in constructing PRGs for the natural class of polynomial threshold functions. In spite of the recent progress, no nontrivial PRGs were known for fooling Lipschitz functions of degree O(log n) polynomials even for constant error rate. In this work, we give the first such generator obtaining a seed-length of (log n)\tilde{O}(d^2/eps^2) for fooling degree d polynomials with error eps. Previous generators had an exponential dependence on the degree. We use our PRG to get better integrality gap instances for sparsest cut, a fundamental problem in graph theory with many applications in graph optimization. We give an instance of uniform sparsest cut for which a powerful semi-definite relaxation (SDP) first introduced by Goemans and Linial and studied in the seminal work of Arora, Rao and Vazirani has an integrality gap of exp(\Omega((log log n)^{1/2})). Understanding the performance of the Goemans-Linial SDP for uniform sparsest cut is an important open problem in approximation algorithms and metric embeddings and our work gives a near-exponential improvement over previous lower bounds which achieved a gap of \Omega(log log n)
    corecore