17,822 research outputs found
A polynomial time approximation scheme for computing the supremum of Gaussian processes
We give a polynomial time approximation scheme (PTAS) for computing the
supremum of a Gaussian process. That is, given a finite set of vectors
, we compute a -factor approximation
to deterministically in time . Previously, only a constant factor
deterministic polynomial time approximation algorithm was known due to the work
of Ding, Lee and Peres [Ann. of Math. (2) 175 (2012) 1409-1471]. This answers
an open question of Lee (2010) and Ding [Ann. Probab. 42 (2014) 464-496]. The
study of supremum of Gaussian processes is of considerable importance in
probability with applications in functional analysis, convex geometry, and in
light of the recent breakthrough work of Ding, Lee and Peres [Ann. of Math. (2)
175 (2012) 1409-1471], to random walks on finite graphs. As such our result
could be of use elsewhere. In particular, combining with the work of Ding [Ann.
Probab. 42 (2014) 464-496], our result yields a PTAS for computing the cover
time of bounded-degree graphs. Previously, such algorithms were known only for
trees. Along the way, we also give an explicit oblivious estimator for
semi-norms in Gaussian space with optimal query complexity. Our algorithm and
its analysis are elementary in nature, using two classical comparison
inequalities, Slepian's lemma and Kanter's lemma.Comment: Published in at http://dx.doi.org/10.1214/13-AAP997 the Annals of
Applied Probability (http://www.imstat.org/aap/) by the Institute of
Mathematical Statistics (http://www.imstat.org
Implications of Anticipated Regret and Endogenous Beliefs for Equilibrium Asset Prices: A Theoretical Framework
This paper builds upon Suryanarayanan (2006a) and further investigates the implications of the model of Anticipated Regret and endogenous beliefs based on the Savage (1951) Minmax Regret Criterion for equilibrium asset pricing. A decision maker chooses an action with state contingent consequences but cannot precisely assess the true probability distribution of the state. She distrusts her prior about the true distribution and surrounds it with a set of alternative but plausible probability distributions. The decision maker minimizes the worst expected regret over all plausible probability distributions and alternative actions, where regret is the loss experienced when the decision maker compares an action to a counterfactual feasible alternative for a given realization of the state. We first study the Merton portfolio problem and illustrate the effects of anticipated regret on the sensitivity of portfolio rules to asset returns.We then embed the model in a version of the Lucas (1978) economy. We characterize asset prices with distorted Euler equations and analyze the implications for the volatility puzzles and Euler pricing errors puzzles.
Moment-Matching Polynomials
We give a new framework for proving the existence of low-degree, polynomial
approximators for Boolean functions with respect to broad classes of
non-product distributions. Our proofs use techniques related to the classical
moment problem and deviate significantly from known Fourier-based methods,
which require the underlying distribution to have some product structure.
Our main application is the first polynomial-time algorithm for agnostically
learning any function of a constant number of halfspaces with respect to any
log-concave distribution (for any constant accuracy parameter). This result was
not known even for the case of learning the intersection of two halfspaces
without noise. Additionally, we show that in the "smoothed-analysis" setting,
the above results hold with respect to distributions that have sub-exponential
tails, a property satisfied by many natural and well-studied distributions in
machine learning.
Given that our algorithms can be implemented using Support Vector Machines
(SVMs) with a polynomial kernel, these results give a rigorous theoretical
explanation as to why many kernel methods work so well in practice
A PRG for Lipschitz Functions of Polynomials with Applications to Sparsest Cut
We give improved pseudorandom generators (PRGs) for Lipschitz functions of
low-degree polynomials over the hypercube. These are functions of the form
psi(P(x)), where P is a low-degree polynomial and psi is a function with small
Lipschitz constant. PRGs for smooth functions of low-degree polynomials have
received a lot of attention recently and play an important role in constructing
PRGs for the natural class of polynomial threshold functions. In spite of the
recent progress, no nontrivial PRGs were known for fooling Lipschitz functions
of degree O(log n) polynomials even for constant error rate. In this work, we
give the first such generator obtaining a seed-length of (log
n)\tilde{O}(d^2/eps^2) for fooling degree d polynomials with error eps.
Previous generators had an exponential dependence on the degree.
We use our PRG to get better integrality gap instances for sparsest cut, a
fundamental problem in graph theory with many applications in graph
optimization. We give an instance of uniform sparsest cut for which a powerful
semi-definite relaxation (SDP) first introduced by Goemans and Linial and
studied in the seminal work of Arora, Rao and Vazirani has an integrality gap
of exp(\Omega((log log n)^{1/2})). Understanding the performance of the
Goemans-Linial SDP for uniform sparsest cut is an important open problem in
approximation algorithms and metric embeddings and our work gives a
near-exponential improvement over previous lower bounds which achieved a gap of
\Omega(log log n)
- …
