13 research outputs found

    Acute Myeloid Leukemia (AML) Detection Using AlexNet Model

    No full text
    Acute Myeloid Leukemia (AML) is a kind of fatal blood cancer with a high death rate caused by abnormal cells’ rapid growth in the human body. The usual method to detect AML is the manual microscopic examination of the blood sample, which is tedious and time-consuming and requires a skilled medical operator for accurate detection. In this work, we proposed an AlexNet-based classification model to detect Acute Myeloid Leukemia (AML) in microscopic blood images and compared its performance with LeNet-5-based model in Precision, Recall, Accuracy, and Quadratic Loss. The experiments are conducted on a dataset of four thousand blood smear samples. The results show that AlexNet was able to identify 88.9% of images correctly with 87.4% precision and 98.58% accuracy, whereas LeNet-5 correctly identified 85.3% of images with 83.6% precision and 96.25% accuracy

    A novel homozygous ARL13B variant in patients with Joubert syndrome impairs its guanine nucleotide-exchange factor activity

    Full text link
    ARL13B encodes for the ADP-ribosylation factor-like 13B GTPase, which is required for normal cilia structure and Sonic hedgehog (Shh) signaling. Disruptions in cilia structure or function lead to a class of human disorders called ciliopathies. Joubert syndrome is characterized by a wide spectrum of symptoms, including a variable degree of intellectual disability, ataxia, and ocular abnormalities. Here we report a novel homozygous missense variant c.[223G>A] (p.(Gly75Arg) in the ARL13B gene, which was identified by whole-exome sequencing of a trio from a consanguineous family with multiple-affected individuals suffering from intellectual disability, ataxia, ocular defects, and epilepsy. The same variant was also identified in a second family. We saw a striking difference in the severity of ataxia between affected male and female individuals in both families. Both ARL13B and ARL13B-c.[223G>A] (p.(Gly75Arg) expression rescued the cilia length and Shh defects displayed by Arl13b hennin (null) cells, indicating that the variant did not disrupt either ARL13B function. In contrast, ARL13B-c.[223G>A] (p.(Gly75Arg) displayed a marked loss of ARL3 guanine nucleotide-exchange factor activity, with retention of its GTPase activities, highlighting the correlation between its loss of function as an ARL3 guanine nucleotide-exchange factor and Joubert syndrome
    corecore