12 research outputs found

    Sensitivity of nonlinear photoionization to resonance substructure in collective excitation

    Get PDF
    Collective behaviour is a characteristic feature in many-body systems, important for developments in fields such as magnetism, superconductivity, photonics and electronics. Recently, there has been increasing interest in the optically nonlinear response of collective excitations. Here we demonstrate how the nonlinear interaction of a many-body system with intense XUV radiation can be used as an effective probe for characterizing otherwise unresolved features of its collective response. Resonant photoionization of atomic xenon was chosen as a case study. The excellent agreement between experiment and theory strongly supports the prediction that two distinct poles underlie the giant dipole resonance. Our results pave the way towards a deeper understanding of collective behaviour in atoms, molecules and solid-state systems using nonlinear spectroscopic techniques enabled by modern short-wavelength light sources

    Two-electron processes in multiple ionization under strong soft-x-ray radiation

    Get PDF
    In a combined experimental and theoretical study we have investigated the ionization of atomic argon upon irradiation with intense soft-x-ray pulses of 105 eV photon energy from the free-electron laser FLASH. The measured ion yields show charge states up to Ar7+. The comparison with the theoretical study of the underlying photoionization dynamics highlights the importance of excited states in general and of processes governed by electron correlation in particular, namely, ionization with excitation and shake-off, processes usually inaccessible by measurements of ionic yields only. The Ar7+ yield shows a clear deviation from the predictions of the commonly used model of sequential ionization via single-electron processes and the observed signal can only be explained by taking into account the full multiplet structure of the involved configurations and by inclusion of two-electron processes. The competing process of two-photon ionization from the ground state of Ar6+ is calculated to be orders of magnitude smaller

    Escaping into the world of make-up routines in Iran

    Get PDF
    Traditionally, and as a result of cultural turn's emphasis on identity, Iranian women's use of dress and make-up has been an arena – sometimes a battleground – for identity negotiation. The present study questions the current over-emphasis on identity and the prevalent tendency to look for identity meanings in the use of hejab (veiling) and cosmetics. The results of fifteen interpretive in-depth interviews with young adult women in Iran reveal that these individuals' make-up practices are largely associated with a total immersion in the experiential, creative aspects of make-up use and with ways to uplift their tired spirits in a monotonous environment. Make-up routines provide these women with opportunities to escape from boredom and immerse themselves in the playful fantasies of the world of cosmetics. Despite facing various challenges, including frequent stigmatisation on account of their use of make-up, the informants in the study derive high levels of satisfaction from their make-up practices. The study establishes that changing socio-cultural dynamics give rise to new forms of consumption experiences in contemporary society and calls for further investigation of such experiences in women's everyday lives

    Circular Dichroism in Multiphoton Ionization of Resonantly Excited He+He^{+} Ions

    No full text
    Intense, circularly polarized extreme-ultraviolet and near-infrared (NIR) laser pulses are combined to double ionize atomic helium via the oriented intermediate He+(3p) resonance state. Applying angle-resolved electron spectroscopy, we find a large photon helicity dependence of the spectrum and the angular distribution of the electrons ejected from the resonance by NIR multiphoton absorption. The measured circular dichroism is unexpectedly found to vary strongly as a function of the NIR intensity. The experimental data are well described by theoretical modeling and possible mechanisms are discussed

    Angular distribution and circular dichroism in the two-colour XUV+NIR above-threshold ionization of helium

    No full text
    The photoelectron angular distribution and the circular dichroism in two-colour XUV+NIR above-threshold ionization of helium atoms have been investigated both experimentally and theoretically. Circularly polarized XUV pulses from the free electron laser FERMI have been spatially and temporally overlapped with circularly polarized optical pulses in the interaction region with an atomic helium jet. The emitted electrons were energy and angle analyzed by means of a velocity map imaging spectrometer. Asymmetry parameters of the angular distribution were determined and compared to theoretical predictions based on the strong field approximation and perturbation theory, respectively. For low NIR intensities, the ratio of the partial waves in the two-photon ionization process and their relative phase could be deduced. For high NIR intensities, the influence of multi-photon processes is discussed. Circular dichroism was revealed in both cases and is in good agreement with the results of the strong field approximation

    Optical-EUV Pump and Probe Experiments With Variable Polarization on the Newly Open LDM Beamline of FERMI@Elettra

    No full text
    Two color experiments are now available to users at the low-density matter beamline (LDM) operating at the Free Electron Laser (FEL) source FERMI@Elettra [1]. The seeded FEL method used at FERMI allows generation of high power, coherent pulses in the femtosecond regime, with a high level of shot-to-shot stability. Variable polarization is also available. LDM is dedicated to atomic, molecular and cluster physics. The LDM endstation,equipped with a velocity map imaging and a time-of-flight detector [2], is an ideal tool to characterize fast multiphoton processes. LDM was open to users in December 2012 and in February 2013 performed its firstpump and probe experiment on photoionization of atomic He and generation of spectral sidebands. The FERMI FEL-1 source, delivered EUV photons with several tens of microjoule per pulse (about 100 fs wide) in atunable wavelength range from 65 to 20 nm, while the 780 nm, optical pulses were from the same Ti:sapphire laser used to form the FEL seed pulse. This paper gives details about the pump and probe experimental setupand shows the straightforward use of the pump and probe data to measure the FEL pulse width

    Determining the polarization state of an extreme ultraviolet free-electron laser beam using atomic circular dichroism

    Get PDF
    Ultrafast extreme ultraviolet and X-ray free-electron lasers are set to revolutionize many domains such as bio-photonics and materials science, in a manner similar to optical lasers over the past two decades. Although their number will grow steadily over the coming decade, their complete characterization remains an elusive goal. This represents a significant barrier to their wider adoption and hence to the full realization of their potential in modern photon sciences. Although a great deal of progress has been made on temporal characterization and wavefront measurements at ultrahigh extreme ultraviolet and X-ray intensities, only few, if any progress on accurately measuring other key parameters such as the state of polarization has emerged. Here we show that by combining ultra-short extreme ultraviolet free electron laser pulses from FERMI with near-infrared laser pulses, we can accurately measure the polarization state of a free electron laser beam in an elegant, non-invasive and straightforward manner using circular dichroism
    corecore