1,150 research outputs found

    Review of measurement techniques for unsteady helicopter rotor flows

    Get PDF
    The helicopter group at the DLR in Göttingen has been actively involved in the development of measurement techniques for unsteady flows, particularly as they apply to the problems found in unsteady rotor blade aerodynamics. This includes the development and validation of new techniques for the detection of dynamically moving boundary layer transition, and for the detection of dynamic stall and other transient flow separation events. These new techniques include pressure sensor analysis, differential infrared thermography, local infrared thermography and the automated analysis of hot-film data. Particle image velocimetry (PIV) and background oriented schlieren (BOS) have been used for the analysis of the unsteady off-body flow, and synchronised PIVBOS-pressure measurements have allowed direct comparisons between different methods. The Lagrangian volumetric PIV variant, shake-the-box, has been used to analyse secondary vortex structures in the vortex wake. This review article will give an overview of the advances in that group, as well as placing their activities in the context of international advances in these areas

    Analytical and experimental investigations of dual-plane PIV

    Get PDF
    In its 'classical' form particle image velocimetry (PIV) extracts two components of the flow velocity vector by measuring the displacement of tracer particles within a double-pulsed laser light sheet. The method described in this paper is based on the additional recording of a third exposure of the tracer particles in a parallel light sheet, which is slightly displaced with respect to the first one. The particle images resulting from these three exposures are stored on separate frames. The locations of the correlation peaks, as obtained by cross-correlation methods, are used to determine the projections of the velocity vectors onto the plane between both light sheets. In the manner described below, the amplitudes of these peaks are used to obtain information about the velocity component perpendicular to the light sheet planes. The mathematical background of this method is described in the paper. Numerical simulations show the influence of the main parameters (e.g. light sheet thickness, light sheet displacement and out-of-plane component) on the resolution and reliability of the new method. Two different recording procedures and their results will be shown to demonstrate the ease of operation when applying this technique to liquid flows

    Effects of process conditions on foaming in stirred tanks

    Get PDF
    International audienceThe effect of impeller speed and type, as well as gas flow rate on the amount of foam generated in a 5L stirred tank has been studied. Foam height was found to increase with increasing impeller speed after a critical impeller speed was reached. It also increased with increasing gas flow rate. The disc turbine creates significantly more foam than the down-pumping hydrofoil for a given tip speed. Scale-up guidance to correctly replicate the amount of foaming in larger scale tank was also investigated. It was found that impeller tip speed was the best scale-up invariant, compared with power per unit volume and the Weber and Froude numbers. It is less clear, however, which is the best scale-up invariant for the gas flow rate; aeration number appears more adapted than the superficial gas velocity or the ratio of gas flow rate to liquid volume, however it does not always correctly replicate the gas-liquid flow regime

    Transition phenomena in unstably stratified turbulent flows

    Full text link
    We study experimentally and theoretically transition phenomena caused by the external forcing from Rayleigh-Benard convection with the large-scale circulation (LSC) to the limiting regime of unstably stratified turbulent flow without LSC whereby the temperature field behaves like a passive scalar. In the experiments we use the Rayleigh-B\'enard apparatus with an additional source of turbulence produced by two oscillating grids located nearby the side walls of the chamber. When the frequency of the grid oscillations is larger than 2 Hz, the large-scale circulation (LSC) in turbulent convection is destroyed, and the destruction of the LSC is accompanied by a strong change of the mean temperature distribution. However, in all regimes of the unstably stratified turbulent flow the ratio [(ℓx∇xT)2+(ℓy∇yT)2+(ℓz∇zT)2]/\big[(\ell_x \nabla_x T)^2 + (\ell_y \nabla_y T)^2 + (\ell_z \nabla_z T)^2\big] / varies slightly (even in the range of parameters whereby the behaviour of the temperature field is different from that of the passive scalar). Here ℓi\ell_i are the integral scales of turbulence along x, y, z directions, T and \theta are the mean and fluctuating parts of the fluid temperature. At all frequencies of the grid oscillations we have detected the long-term nonlinear oscillations of the mean temperature. The theoretical predictions based on the budget equations for turbulent kinetic energy, turbulent temperature fluctuations and turbulent heat flux, are in agreement with the experimental results.Comment: 14 pages, 14 figures, REVTEX4-1, revised versio

    Tangling clustering of inertial particles in stably stratified turbulence

    Full text link
    We have predicted theoretically and detected in laboratory experiments a new type of particle clustering (tangling clustering of inertial particles) in a stably stratified turbulence with imposed mean vertical temperature gradient. In this stratified turbulence a spatial distribution of the mean particle number density is nonuniform due to the phenomenon of turbulent thermal diffusion, that results in formation of a gradient of the mean particle number density, \nabla N, and generation of fluctuations of the particle number density by tangling of the gradient, \nabla N, by velocity fluctuations. The mean temperature gradient, \nabla T, produces the temperature fluctuations by tangling of the gradient, \nabla T, by velocity fluctuations. These fluctuations increase the rate of formation of the particle clusters in small scales. In the laboratory stratified turbulence this tangling clustering is much more effective than a pure inertial clustering that has been observed in isothermal turbulence. In particular, in our experiments in oscillating grid isothermal turbulence in air without imposed mean temperature gradient, the inertial clustering is very weak for solid particles with the diameter 10 microns and Reynolds numbers Re =250. Our theoretical predictions are in a good agreement with the obtained experimental results.Comment: 16 pages, 4 figures, REVTEX4, revised versio

    An assessment on the unsteady flow distortion generated by an S-duct intake

    Get PDF
    Closer integration between the fuselage and the propulsion system is expected for futureaircraft toreducefuel consumption, emissions, weight and drag. The use of embedded or partially embedded propulsion systems may require the use of complex intakes. However, thiscanresult in unsteady flow distortion which can adversely affect the propulsion system efficiency and stability. This works assesses the characteristics of the unsteady flow with a view to the potential flow distortion presented to the compression system.Particle image velocimetry is used to measure the flow distortion generated by an S-shaped intake.The time-resolved tracking of the idealized relative incidence angle revealed that most frequent distortion events exhibited90°exposure sector and upto±5°meanrelativeincidence. The imposition of a thicker boundary at the S-duct inlet increased the probability of distortion events that are characterized by a longer exposure sector and higher relative incidence angles.Because of these characteristics, thedistortion caused by the S-duct intake could induce instabilities that are detrimental for the propulsion system performances and stability. Overall, this work proposes a new method to assess thepossible relativeincidence angle on the compressor rotor taking into account the intake flow unsteadiness
    • 

    corecore