90 research outputs found

    Transition metal ions at the crossroads of mucosal immunity and microbial pathogenesis.

    Get PDF
    Transition metal ions are essential micronutrients for all living organisms. In mammals, these ions are often protein-bound and sequestered within cells, limiting their availability to microbes. Moreover, in response to infection, mammalian hosts further reduce the availability of metal nutrients by activating epithelial cells and recruiting neutrophils, both of which release metal-binding proteins with antimicrobial function. Microorganisms, in turn, have evolved sophisticated systems to overcome these limitations and acquire the metal ions essential for their growth. Here we review some of the mechanisms employed by the host and by pathogenic microorganisms to compete for transition metal ions, with a discussion of how evading "nutritional immunity" benefits pathogens. Furthermore, we provide new insights on the mechanisms of host-microbe competition for metal ions in the mucosa, particularly in the inflamed gut

    Mechanisms to Evade the Phagocyte Respiratory Burst Arose by Convergent Evolution in Typhoidal Salmonella Serovars.

    Get PDF
    Typhoid fever caused by Salmonella enterica serovar (S.) Typhi differs in its clinical presentation from gastroenteritis caused by S. Typhimurium and other non-typhoidal Salmonella serovars. The different clinical presentations are attributed in part to the virulence-associated capsular polysaccharide (Vi antigen) of S. Typhi, which prevents phagocytes from triggering a respiratory burst by preventing antibody-mediated complement activation. Paradoxically, the Vi antigen is absent from S. Paratyphi A, which causes a disease that is indistinguishable from typhoid fever. Here, we show that evasion of the phagocyte respiratory burst by S. Paratyphi A required very long O antigen chains containing the O2 antigen to inhibit antibody binding. We conclude that the ability to avoid the phagocyte respiratory burst is a property distinguishing typhoidal from non-typhoidal Salmonella serovars that was acquired by S. Typhi and S. Paratyphi A independently through convergent evolution

    Siderophore-Mediated Zinc Acquisition Enhances Enterobacterial Colonization of the Inflamed Gut

    Get PDF
    Zinc is an essential cofactor for bacterial metabolism, and many Enterobacteriaceae express the zinc transporters ZnuABC and ZupT to acquire this metal in the host. However, the probiotic bacterium Escherichia coli Nissle 1917 (or β€œNissle”) exhibits appreciable growth in zinc-limited media even when these transporters are deleted. Here, we show that Nissle utilizes the siderophore yersiniabactin as a zincophore, enabling Nissle to grow in zinc-limited media, to tolerate calprotectin-mediated zinc sequestration, and to thrive in the inflamed gut. We also show that yersiniabactin’s affinity for iron or zinc changes in a pH-dependent manner, with increased relative zinc binding as the pH increases. Thus, our results indicate that siderophore metal affinity can be influenced by the local environment and reveal a mechanism of zinc acquisition available to commensal and pathogenic Enterobacteriaceae

    Th17 Cytokines and the Gut Mucosal Barrier

    Get PDF
    Local immune responses serve to contain infections by pathogens to the gut while preventing pathogen dissemination to systemic sites. Several subsets of T cells in the gut (T-helper 17 cells, Ξ³Ξ΄ T cells, natural killer (NK), and NK-T cells) contribute to the mucosal response to pathogens by secreting a subset of cytokines including interleukin (IL)-17A, IL-17F, IL-22, and IL-26. These cytokines induce the secretion of chemokines and antimicrobial proteins, thereby orchestrating the mucosal barrier against gastrointestinal pathogens. While the mucosal barrier prevents bacterial dissemination from the gut, it also promotes colonization by pathogens that are resistant to some of the inducible antimicrobial responses. In this review, we describe the contribution of Th17 cytokines to the gut mucosal barrier during bacterial infections

    Cytokines IL-17 and IL-22 in the host response to infection.

    Get PDF
    Cytokines IL-17 and IL-22 play pivotal roles in host defense against microbes and in the development of chronic inflammatory diseases. These cytokines are produced by cells that are often located in epithelial barriers, including subsets of T cells and innate lymphoid cells. In general, IL-17 and IL-22 can be characterized as important cytokines in the rapid response to infectious agents, both by recruiting neutrophils and by inducing the production of antimicrobial peptides. Although each cytokine induces an innate immune response in epithelial cells, their functional spectra are generally distinct: IL-17 mainly induces an inflammatory tissue response and is involved in the pathogenesis of several autoimmune diseases, whereas IL-22 is largely protective and regenerative. In this review, we compare IL-17 and IL-22, describing overlaps and differences in their cellular sources as well as their regulation, signaling, biological functions and roles during disease, with a focus on the contribution of these cytokines to the gut mucosal barrier during bacterial infection

    Siderophores: More than Stealing Iron.

    No full text
    Siderophores are small molecular iron chelators that are produced by microbes and whose most notable function is to sequester iron from the host and provide this essential metal nutrient to microbes. Recent studies have proposed additional, noncanonical roles for siderophores, including the acquisition of noniron metals and modulation of host functions. Recently, Holden et al. (V. I. Holden, P. Breen, S. Houle, C. M. Dozois, and M. A. Bachman, mBio 7:e01397-16, 2016, http://dx.doi.org/10.1128/mBio.01397-16) showed that siderophores secreted by Klebsiella pneumoniae during lung infection induce stabilization of the transcription factor HIF-1Ξ±, increase the expression of proinflammatory cytokines in the lung, and promote dissemination of K. pneumoniae to the spleen. Thus, their study demonstrated novel roles for siderophores in vivo, beyond iron sequestration. The interaction of siderophores with host cells further promotes the pathogenicity of K. pneumoniae and is likely relevant for other pathogens that also secrete siderophores in the host
    • …
    corecore