41 research outputs found

    NanoPower Research Labs

    Get PDF

    Silicon Carbide Solar Cells Investigated

    Get PDF
    The semiconductor silicon carbide (SiC) has long been known for its outstanding resistance to harsh environments (e.g., thermal stability, radiation resistance, and dielectric strength). However, the ability to produce device-quality material is severely limited by the inherent crystalline defects associated with this material and their associated electronic effects. Much progress has been made recently in the understanding and control of these defects and in the improved processing of this material. Because of this work, it may be possible to produce SiC-based solar cells for environments with high temperatures, light intensities, and radiation, such as those experienced by solar probes. Electronics and sensors based on SiC can operate in hostile environments where conventional silicon-based electronics (limited to 350 C) cannot function. Development of this material will enable large performance enhancements and size reductions for a wide variety of systems--such as high-frequency devices, high-power devices, microwave switching devices, and high-temperature electronics. These applications would supply more energy-efficient public electric power distribution and electric vehicles, more powerful microwave electronics for radar and communications, and better sensors and controls for cleaner-burning, more fuel-efficient jet aircraft and automobile engines. The 6H-SiC polytype is a promising wide-bandgap (Eg = 3.0 eV) semiconductor for photovoltaic applications in harsh solar environments that involve high-temperature and high-radiation conditions. The advantages of this material for this application lie in its extremely large breakdown field strength, high thermal conductivity, good electron saturation drift velocity, and stable electrical performance at temperatures as high as 600 C. This behavior makes it an attractive photovoltaic solar cell material for devices that can operate within three solar radii of the Sun

    High-temperature Solar Cell Development

    Get PDF
    The vast majority of space probes to date have relied upon photovoltaic power generation. If future missions designed to probe environments close to the sun (Figure 1) will be able to use such power generation, solar cells that can function at high temperatures, under high light intensity, and high radiation conditions must be developed. The significant problem is that solar cells lose performance at high temperatures

    Nanostructured Materials for Solar Cells

    Get PDF
    The use of both inorganic and organic nanostructured materials in producing high efficiency photovoltaics is discussed in this paper. Recent theoretical results indicate that dramatic improvements in device efficiency may be attainable through the use of semiconductor quantum dots in an ordinary p-i-n solar cell. In addition, it has also recently been demonstrated that quantum dots can also be used to improve conversion efficiencies in polymeric thin film solar cells. A similar improvement in these types of cells has also been observed by employing single wall carbon nanotubes. This relatively new carbon allotrope may assist both in the disassociation of excitons as well as carrier transport through the composite material. This paper reviews the efforts that are currently underway to produce and characterize these nanoscale materials and to exploit their unique properties

    Evidence for a Crossover from Multiple Trapping to Percolation in the High-Temperature Electrical Conductivity of Mn-doped LaCroO₃

    Get PDF
    We explain the deep electrical conductivity minimum near x=0.05 in the perovskite-type ceramic LaCr1-xMnxO3 as a crossover between two different regimes of hopping conduction. At low Mn concentrations the diffusion of small polarons among Cr ions is limited by multiple trapping at energetically lower Mn sites. At higher concentrations a percolating path of Mn sites forms and direct transport between Mn ions dominates the conduction process

    Dispersion and separation of nanostructured carbon in organic solvents

    Get PDF
    The present invention relates to dispersions of nanostructured carbon in organic solvents containing alkyl amide compounds and/or diamide compounds. The invention also relates to methods of dispersing nanostructured carbon in organic solvents and methods of mobilizing nanostructured carbon. Also disclosed are methods of determining the purity of nanostructured carbon

    Transport Anomalies in the High-Temperature Hopping Conductivity and Thermopower of Sr-doped La(Cr,Mn)O,₃

    Get PDF
    A minimum exists in the electrical conductivity of the perovskite-type ceramic LaCr1-xMnxO3 as a function of Mn content near x=0.05. This minimum has been explained in terms of a crossover from multiple trapping to percolation among energetically lower Mn sites. In this paper electrical conductivity and Seebeck measurements are presented on a similar series in which 10 mol % Sr was substituted for La in order to increase the small polaron concentration through the compensation of Sr ions according to the Verway mechanism. The data suggests that there is an apparent suppression of the Verway compensation mechanism in all Mn-doped samples. The hopping crossover observed in the Sr-free series is retained with Sr doping, although the position and depth of the electrical-conductivity minimum are altered. Difficulties in the present understanding and interpretation of the electrical conductivity and Seebeck measurements as a function of Mn and Sr content in these materials are discussed. An electronic structure is suggested, which seems to resolve many of these problems

    High Temperature Solar Cell Development

    Get PDF
    The majority of satellites and near-earth probes developed to date have used photovoltaic arrays for power generation. If future mission to probe environments close to the sun will be able to use photovoltaic power, solar cells that can function at high temperatures, under high light intensity, and high radiation conditions must be developed. In this paper, we derive the optimum bandgap as a function of the operating temperature

    Alpha voltaic batteries and methods thereof

    Get PDF
    An alpha voltaic battery includes at least one layer of a semiconductor material comprising at least one p/n junction, at least one absorption and conversion layer on the at least one layer of semiconductor layer, and at least one alpha particle emitter. The absorption and conversion layer prevents at least a portion of alpha particles from the alpha particle emitter from damaging the p/n junction in the layer of semiconductor material. The absorption and conversion layer also converts at least a portion of energy from the alpha particles into electron-hole pairs for collection by the one p/n junction in the layer of semiconductor material

    Single Wall Carbon Nanotube-polymer Solar Cells

    Get PDF
    Investigation of single wall carbon nanotube (SWNT)-polymer solar cells has been conducted towards developing alternative lightweight, flexible devices for space power applications. Photovoltaic devices were constructed with regioregular poly(3-octylthiophene)-(P3OT) and purified, >95% w/w, laser-generated SWNTs. The P3OT composites were deposited on ITO-coated polyethylene terapthalate (PET) and I-V characterization was performed under simulated AM0 illumination. Fabricated devices for the 1.0% w/w SWNT-P3OT composites showed a photoresponse with an open-circuit voltage (V(sub oc)) of 0.98 V and a short-circuit current density (I(sub sc)) of 0.12 mA/sq cm. Optimization of carrier transport within these novel photovoltaic systems is proposed, specifically development of nanostructure-SWNT complexes to enhance exciton dissociation
    corecore