22 research outputs found

    Reduced Glutathione Mediates Pheno-Ultrastructure, Kinome and Transportome in Chromium-Induced Brassica napus L.

    No full text
    Chromium (Cr) as a toxic metal is widely used for commercial purposes and its residues have become a potential environmental threat to both human and plant health. Oilseed rape (Brassica napus L.) is one of the candidate plants that can absorb the considerable quantity of toxic metals from the soil. Here, we used two cultivars of B. napus cvs. ZS 758 (metal-tolerant) and Zheda 622 (metal-susceptible) to investigate the phenological attributes, cell ultrastructure, protein kinases (PKs) and molecular transporters (MTs) under the combined treatments of Cr stress and reduced glutathione (GSH). Seeds of these cultivars were grown in vitro at different treatments i.e., 0, 400 μM Cr, and 400 μM Cr + 1 mM GSH in control growth chamber for 6 days. Results had confirmed that Cr significantly reduced the plant length, stem and root, and fresh biomass such as leaf, stem and root. Cr noticeably caused the damages in leaf mesophyll cells. Exogenous application of GSH significantly recovered both phenological and cell structural damages in two cultivars under Cr stress. For the PKs, transcriptomic data advocated that Cr stress alone significantly increased the gene expressions of BnaA08g16610D, BnaCnng19320D, and BnaA08g00390D over that seen in controls (Ck). These genes encoded both nucleic acid and transition metal ion binding proteins, and protein kinase activity (PKA) and phosphotransferase activities in both cultivars. Similarly, the presence of Cr revealed elite MT genes [BnaA04g26560D, BnaA02g28130D, and BnaA02g01980D (novel)] that were responsible for water transmembrane transporter activity. However, GSH in combination with Cr stress significantly up-regulated the genes for PKs [such as BnaCnng69940D (novel) and BnaC08g49360D] that were related to PKA, signal transduction, and oxidoreductase activities. For MTs, BnaC01g29930D and BnaA07g14320D were responsible for secondary active transmembrane transporter and protein transporter activities that were expressed more in GSH treatment than either Ck or Cr-treated cells. In general, it can be concluded that cultivar ZS 758 is more tolerant toward Cr-induced stress than Zheda 622

    Alleviation of Lead Toxicity by 5-Aminolevulinic Acid Is Related to Elevated Growth, Photosynthesis, and Suppressed Ultrastructural Damages in Oilseed Rape

    No full text
    Lead (Pb) is a widely spread pollutant and leads to diverse morphological and structural changes in the plants. In this study, alleviating role of 5-aminolevulinic acid (ALA) in oilseed rape (Brassica napus L.) was investigated with or without foliar application of ALA (25 mg L−1) in hydroponic environment under different Pb levels (0, 100, and 400 µM). Outcomes stated that plant morphology and photosynthetic attributes were reduced under the application of Pb alone. However, ALA application significantly increased the plant growth and photosynthetic parameters under Pb toxicity. Moreover, ALA also lowered the Pb concentration in shoots and roots under Pb toxicity. The microscopic studies depicted that exogenously applied ALA ameliorated the Pb stress and significantly improved the cell ultrastructures. After application of ALA under Pb stress, mesophyll cell had well-developed nucleus and chloroplast having a number of starch granules. Moreover, micrographs illustrated that root tip cell contained well-developed nucleus, a number of mitochondria, and golgi bodies. These results proposed that under 15-day Pb-induced stress, ALA improved the plant growth, chlorophyll content, photosynthetic parameters, and ultrastructural modifications in leaf mesophyll and root tip cells of the B. napus plants

    Ecotoxicological and Interactive Effects of Copper and Chromium on Physiochemical, Ultrastructural, and Molecular Profiling in Brassica napus L.

    No full text
    Heavy metal accumulation causes huge environmental problems, particularly in agricultural ecosystems which have deteriorative effects on the yield and quality of crops. Individual copper (Cu) and chromium (Cr) effects have been investigated extensively in plants; however, co-contamination of Cu and Cr induced stress on Brassica napus L. is still unclear. In the present experiment, the interactive effects of Cu and Cr were studied in two B. napus cultivars (Zheda 622 and ZS 758). Results showed that the application of Cr was more toxic than Cu, and their combined stress had shown a significant adverse effect on plant growth. Biomass and photosynthetic pigment were decreased remarkably under all metal treatments. Individual treatments of Cu and Cr and their combination cause the accumulation of ROS and lipid peroxidation. Moreover, the activities of antioxidant enzymes and their mRNA transcription levels, such as catalase (CAT), ascorbate peroxidase, glutathione reductase, superoxide dismutase, and peroxidase, were increased, especially when treated with Cr alone or under Cu+Cr combined treatment in both cultivars, except for the CAT activity which was decreased in both leaves and roots of sensitive cultivar Zheda 622 as compared with their respective controls. Additionally, nonenzymatic antioxidants like reduced and oxidized glutathione showed a differential activity pattern in roots and leaves of both cultivars. A more pronounced modification in chloroplast ultrastructure was observed in both cultivars under Cu+Cr treatment followed by Cr and Cu alone treatments. Furthermore, synergistic effects of Cu and Cr were prominent; this may be due to the enhanced metals uptake under combined treatment, which suggests that Cr and Cu interaction is not competitive but is rather additive and genotypic-dependent

    Regulation of Cadmium-Induced Proteomic and Metabolic Changes by 5-Aminolevulinic Acid in Leaves of Brassica napus L.

    No full text
    It is evident from previous reports that 5-aminolevulinic acid (ALA), like other known plant growth regulators, is effective in countering the injurious effects of heavy metal-stress in oilseed rape (Brassica napus L.). The present study was carried out to explore the capability of ALA to improve cadmium (Cd2+) tolerance in B. napus through physiological, molecular, and proteomic analytical approaches. Results showed that application of ALA helped the plants to adjust Cd2+-induced metabolic and photosynthetic fluorescence changes in the leaves of B. napus under Cd2+ stress. The data revealed that ALA treatment enhanced the gene expressions of antioxidant enzyme activities substantially and could increase the expression to a certain degree under Cd2+ stress conditions. In the present study, 34 protein spots were identified that differentially regulated due to Cd2+ and/or ALA treatments. Among them, 18 proteins were significantly regulated by ALA, including the proteins associated with stress related, carbohydrate metabolism, catalysis, dehydration of damaged protein, CO2 assimilation/photosynthesis and protein synthesis/regulation. From these 18 ALA-regulated proteins, 12 proteins were significantly down-regulated and 6 proteins were up-regulated. Interestingly, it was observed that ALA-induced the up-regulation of dihydrolipoyl dehydrogenase, light harvesting complex photo-system II subunit 6 and 30S ribosomal proteins in the presence of Cd2+ stress. In addition, it was also observed that ALA-induced the down-regulation in thioredoxin-like protein, 2, 3-bisphosphoglycerate, proteasome and thiamine thiazole synthase proteins under Cd2+ stress. Taken together, the present study sheds light on molecular mechanisms involved in ALA-induced Cd2+ tolerance in B. napus leaves and suggests a more active involvement of ALA in plant physiological processes than previously proposed

    Covid-19 Spread Prediction and Its Correlation with Social Distancing, Available Health Facilities Using GIS Mapping Data Models in Lahore, Pakistan

    Full text link
    Virus spreading and its mitigation is an important safety issue that has drawn wide attention of many countries and people. For researchers in this area, it is an interesting work to study virus spreading with safety theories and methods. In this paper, we worked on the spatial extent of SIR model, which considers the known facts of Covid-19 behavior i.e. its spreading extent with time, the total population of area concerned and dedicated health facilities. Also, a special relationship between Covid-19 cases and NLDI data driven by night-time satellite imagery is being discussed. Results predicted a huge gap between predicted and presently available facilities for number of hospitals, beds, and ventilators. Findings suggest that developing countries like our study area Lahore District, Pakistan needs to follow social distancing at immense level, which not only helps in reducing the numbers of infections and fatalities but also the time duration of the whole epidemic. Maps based on NLDI vales, predicted cases, hospitals and ventilators needs could be greatly helpful for policymakers to analyze situation and concentrate on areas which needs immediate attention. Dealing with the pandemic requires a pre-planned command and control structure that could make quick and informed decisions in the whole city. We recommend that the use of proper model prediction at Union Council level can help local government in policymaking related social distancing and healthcare systems. The decision of social distancing should be on time and like what percent of social distancing is needed, which tackle with the already available health care structure

    Arsenic toxicity in plants: cellular and molecular mechanisms of its transport and metabolism

    No full text
    Arsenic (As), a naturally-occurring metalloid, is not essential for plant growth, but it can accumulate in plants to toxic levels. As a result, it can enter the food chain and pose health risk to humans. Multiple mechanisms are involved in the uptake and metabolism of As in plants. The most toxic forms of this element are As and As. Methylated As and arsenite (as As) move through the noduline 26-like intrinsic protein (NIP) aquaporin channels while arsenate (as As) is taken up through the phosphate transporters. In the Pteridaceae family, some fern species show hyper-accumulating behavior towards As in aboveground tissues. However, generally in plants, the chelation phenomenon detoxifies arsenite through complexation with the thiol-rich peptide. This comprehensive review encompasses the mechanisms of transport, metabolism, and tolerance that plants show in response to As. Some recent advancement in plant breeding, genetic modifications and remediation approaches to overcome soil and food contamination problems are also summarized. We will also evaluate the implications of these new findings and assess how this may help in developing the crops that can be grown in high As regions and ultimately will be safe for consumers

    Beryllium Stress-Induced Modifications in Antioxidant Machinery and Plant Ultrastructure in the Seedlings of Black and Yellow Seeded Oilseed Rape

    No full text
    Beryllium (Be) could be a threatening heavy metal pollutant in the agroecosystem that may severely affect the performance of crops. The present study was conducted to evaluate the toxic effects of Be (0, 100, 200, and 400 μM) on physiological, ultrastructure, and biochemical attributes in hydroponically grown six-day-old seedlings of two cultivars of Brassica napus L., one tolerant (ZS 758, black seeded) and one sensitive (Zheda 622, yellow seeded). Higher Be concentrations reduced the plant growth, biomass production, chlorophyll contents, and the total soluble protein contents. A significant accumulation of ROS (H2O2, OH−) and MDA contents was observed in a dose-dependent manner. Antioxidant enzymatic activities including SOD, POD, GR, APX, and GSH (except CAT) were enhanced with the increase in Be concentrations in both cultivars. Relative transcript gene expression of above-mentioned antioxidant enzymes further confirmed the alterations induced by Be as depicted from higher involvement in the least susceptible cultivar ZS 758 as compared to Zheda 622. The electron microscopic study showed that higher level of Be (400 μM) greatly damaged the leaf mesophyll and root tip cells. More damage was observed in cultivar Zheda 622 as compared to ZS 758. The damage in leaf mesophyll cells was highlighted as the disruption in cell wall, immature nucleus, damaged mitochondria, and chloroplast structures. In root tip cells, disruption in Golgi bodies and damage in cell wall were clearly noticed. As a whole, the present study confirmed that more inhibitory effects were recorded in yellow seeded Zheda 622 as compared to black seeded ZS 758 cultivar, which is regarded as more sensitive cultivar
    corecore