207 research outputs found

    Quantum-dot based ultrafast photoconductive antennae for efficient THz radiation

    Get PDF
    Here we overview our work on quantum dot based THz photoconductive antennae, capable of being pumped at very high optical intensities of higher than 1W optical mean power, i.e. about 50 times higher than the conventional LT-GaAs based antennae. Apart from high thermal tolerance, defect-free GaAs crystal layers in an InAs:GaAs quantum dot structure allow high carrier mobility and ultra-short photo carrier lifetimes simultaneously. Thus, they combine the advantages and lacking the disadvantages of GaAs and LT-GaAs, which are the most popular materials so far, and thus can be used for both CW and pulsed THz generation. By changing quantum dot size, composition, density of dots and number of quantum dot layers, the optoelectronic properties of the overall structure can be set over a reasonable range-compact semiconductor pump lasers that operate at wavelengths in the region of 1.0 μm to 1.3 μm can be used. InAs:GaAs quantum dot-based antennae samples show no saturation in pulsed THz generation for all average pump powers up to 1W focused into 30 μm spot. Generated THz power is super-linearly proportional to laser pump power. The generated THz spectrum depends on antenna design and can cover from 150 GHz up to 1.5 THz

    On the effective medium theory to study the dielectric response of the cancerous biological tissue

    Get PDF
    Herein, we are making a step forward by treating cancerous tissues as the highly disordered anisotropic media. The classical Maxwell-Garnett technique is utilized. The former stands for as a perfect tool allowing to evaluate an effective medium of the sample analytically with no needs of human intervention by performing an experimental analysis to measure the parameters of the sample. It should be noted, that laboratory measurements of the effective properties are not needed in this case as well. In this relation, the presented technique allows for the creation of the phantom tissue models for the further usage in clinical applications

    Absorption enhancement in hyperbolic metamaterials by means of magnetic plasma

    Get PDF
    The main features of surface plasmon polaritons (SPPs) that can propagate in a metamaterial–magnetic plasma structure are studied from theoretical perspectives. Both the conventional and imaginary parts of the dispersion relation of SPPs are demonstrated considering transverse magnetic (TM) polarization. We examine and discuss the influence of the external magnetic field. The results demonstrate that this factor dramatically alters the nature of SPPs. It is concluded that the positions and propagation lengths of SPPs can be engineered. Moreover, we present an approach allowing for an absorption enhancement that is a pivotal factor in antenna design. A unified insight into the practical methods aiming to attain hyperbolic dispersion by means of nanostructured and nanowire metamaterials is demonstrated

    On the Study of Advanced Nanostructured Semiconductor-Based Metamaterial

    Get PDF
    Tunable metamaterials belonging to the class of different reconfigurable optical devices have proved to be an excellent candidate for dynamic and efficient light control. However, due to the consistent optical response of metals, there are some limitations aiming to directly engineer electromagnetic resonances of widespread metal-based composites. The former is accomplished by altering the features or structures of substrates around the resonant unit cells only. In this regard, the adjusting of metallic composites has considerably weak performance. Herein, we make a step forward by providing deep insight into a direct tuning approach for semiconductor-based composites. The resonance behavior of their properties can be dramatically affected by manipulating the distribution of free carriers in unit cells under an applied voltage. The mentioned approach has been demonstrated in the case of semiconductor metamaterials by comparing the enhanced propagation of surface plasmon polaritons with a conventional semiconductor/air case. Theoretically, the presented approach provides a fertile ground to simplify the configuration of engineerable composites and provides a fertile ground for applications in ultrathin, linearly tunable, and on-chip integrated optical components. These include reconfigurable ultrathin lenses, nanoscale spatial light modulators, and optical cavities with switchable resonance modes

    A systematic insight into the surface plasmon polaritons guided by the graphene based heterostructures

    Get PDF
    Graphene paves the way for the outstanding applications as it is one-atom thick and possesses perfect tunability properties. The main goal of this work is to study mode patterns of surface waves propagating in the graphene-based structures in the far-infrared region. Herein, we study a broad variety of graphene structures starting with the simplest graphene/dielectric interface guiding conventional surface plasmon polaritons (SPPs) and ending up with more complicated cases allowing to have a deeper insight into the complexity of the mode patterns tunability features provided by graphene paving the way for the hybridized waves. Thus, the hybridized surface-phonon-plasmon-polaritons (SPPPs) guided by graphene/LiF/glass compounds are theoretically studied. By constructing a heterostructure comprising graphene and LiF one may benefit from the advantages of both, resulting in engineerable hybridized SPPPs propagating in both directions, i.e. either forwardly or backwardly. Moreover, we conclude with presentation of the metamaterial composed of graphene and LiF building blocks allowing for an enhanced degree of freedom

    Compact all-quantum-dot-based tunable THz laser source

    Get PDF
    We demonstrate an ultracompact, room temperature, tunable terahertz (THz) generating laser source based on difference-frequency-driven photomixing in a coplanar stripline InAs/GaAs quantum-dot (QD) antenna pumped by a broadly tunable, high power, continuous wave InAs/GaAs QD laser diode in the double-grating quasi-Littrow configuration. The dual-wavelength QD laser operating in the 1150- 1301 nm wavelength region with a maximum output power of 280 mW and with tunable difference-frequency (277 GHz to 30 THz) was used to achieve tunable THz generation in the QD antenna with a photoconductive gap of 50 μm. The best THz output performance was observed at pump wavelengths around the first excited state of the InAs/GaAs QDs (∼1160 nm), where a maximum output power of 0.6 nW at 0.83 THz was demonstrated

    Towards novel compact laser sources for non-invasive diagnostics and treatment

    Get PDF
    An important field of application of lasers is biomedical optics. Here, they offer great utility for diagnosis, therapy and surgery. For the development of novel methods of laser-based biomedical diagnostics careful study of light propagation in biological tissues is necessary to enhance our understanding of the optical measurements undertaken, increase research and development capacity and the diagnostic reliability of optical technologies. Ultimately, fulfilling these requirements will increase uptake in clinical applications of laser based diagnostics and therapeutics. To address these challenges informative biomarkers relevant to the biological and physiological function or disease state of the organism must be selected. These indicators are the results of the analysis of tissues and cells, such as blood. For non-invasive diagnostics peripheral blood, cells and tissue can potentially provide comprehensive information on the condition of the human organism. A detailed study of the light scattering and absorption characteristics can quickly detect physiological and morphological changes in the cells due to thermal, chemical, antibiotic treatments, etc [1-5]. The selection of a laser source to study the structure of biological particles also benefits from the fact that gross pathological changes are not induced and diagnostics make effective use of the monochromatic directional coherence properties of laser radiation

    Surface plasmon polariton waves propagation at the boundary of graphene based metamaterial and corrugated metal in THz range

    Get PDF
    Herein we study theoretically surface plasmon polariton (SPP) wave propagation along the nanostructured graphene-based metamaterial/corrugated metal interface. We apply the effective medium approximation formalism aiming to physically model nanostructured metamaterial. The transfer matrix approach is applied to compute the dispersion relationship for SPP waves. It has been concluded that the groove width (a) and the chemical potential (µ) parameters have a dramatical impact aiming to engineer resonance surface plasmon frequencies of the propagation modes. Moreover, one can tune the bandgap corresponding to non-propagation regime by modifying groove width parameter. The impact of the groove width (a) and the chemical potential (µ) on the propagation length was investigated. The present work may have potential applications in optical sensing in terahertz frequency range

    Tunable polaritons of spiral nanowire metamaterials

    Get PDF
    The tunable spiral nanowire metamaterial design at optical frequency is presented, and the surface polaritons are theoretically studied. It was found that the dispersions of the polaritons could be tuned by varying physical dimensions of the spiral nanowire metamaterial. This geometry is unique. Doing so, one may dynamically control the properties of surface polaritons. In addition, the Ferrell–Berreman modes can be excited that is impossible with the regular nanowire metamaterials having the circular cross-section of the nanowires. Herein, the presence of Ferrell–Berreman branches is confirmed by the performed analysis of the metamaterial band structure. It is worthwhile noting, that existence of Ferrell–Berreman modes is possible without epsilon-near-zero (ENZ) regime. The design of devices where Ferrell–Berreman modes can be exploited for practical applications ranging from plasmonic sensing to imaging and absorption enhancement is possible because of the propagation constant revealing subtle microscopic resonances

    Controlling Surface Plasmon Polaritons Propagating at the Boundary of Low-Dimensional Acoustic Metamaterials

    Get PDF
    As a novel type of artificial media created recently, metamaterials demonstrate novel performance and consequently pave the way for potential applications in the area of functional engineering in comparison to the conventional substances. Acoustic metamaterials and plasmonic structures possess a wide variety of exceptional physical features. These include effective negative properties, band gaps, negative refraction, etc. In doing so, the acoustic behaviour of conventional substances is extended. Acoustic metamaterials are considered as the periodic composites with effective parameters that might be engineered with the aim to dramatically control the propagation of supported waves. Homogenization of the system under consideration should be performed to seek the calculation of metamaterial permittivity. The dispersion behaviour of surface waves propagating from the boundary of a nanocomposite composed of semiconductor enclosures that are systematically distributed in a transparent matrix and low-dimensional acoustic metamaterial and constructed by an array of nanowires implanted in a host material are studied. We observed the propagation of surface plasmon polaritons. It is demonstrated that one may dramatically modify the properties of the system by tuning the geometry of inclusions
    • …
    corecore