29 research outputs found

    Period selection for minimal hyperperiod in periodic task systems

    Full text link
    © 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Task period selection is often used to adjust the workload to the available computational resources. In this paper, we propose a model where each selected period is not restricted to be a natural number, but can be any rational number within a range. Under this generalization, we contribute a period selection algorithm that yields a much smaller hyperperiod than that of previous works: with respect to the largest period, the hyperperiod with integer constraints is exponentially bounded; with rational periods the worst case is only quadratic. By means of an integer approximation at each task activation, we show how our rational period approach can work under system clock granularity; it is thus compatible with scheduling analysis practice and implementation. Our finding has practical applications in several fields of real-time scheduling: lowering complexity in table driven schedulers, reducing search space in model checking analysis, generating synthetic workload for statistical analysis of real-time scheduling algorithms, etc.This work has been funded by the Spanish Government Research Office, project TIN2008-06766-C03-02 (RT-MODEL).Ripoll Ripoll, JI.; Ballester-Ripoll, R. (2013). Period selection for minimal hyperperiod in periodic task systems. IEEE Transactions on Computers. 62(9):1813-1822. https://doi.org/10.1109/TC.2012.243S1813182262

    SenVis: Interactive Tensor-based Sensitivity Visualization

    Full text link
    Sobol's method is one of the most powerful and widely used frameworks for global sensitivity analysis, and it maps every possible combination of input variables to an associated Sobol index. However, these indices are often challenging to analyze in depth, due in part to the lack of suitable, flexible enough, and fast-to-query data access structures as well as visualization techniques. We propose a visualization tool that leverages tensor decomposition, a compressed data format that can quickly and approximately answer sophisticated queries over exponential-sized sets of Sobol indices. This way, we are able to capture the complete global sensitivity information of high-dimensional scalar models. Our application is based on a three-stage visualization, to which variables to be analyzed can be added or removed interactively. It includes a novel hourglass-like diagram presenting the relative importance for any single variable or combination of input variables with respect to any composition of the rest of the input variables. We showcase our visualization with a range of example models, whereby we demonstrate the high expressive power and analytical capability made possible with the proposed method

    Tensor Approximation for Multidimensional and Multivariate Data

    Full text link
    Tensor decomposition methods and multilinear algebra are powerful tools to cope with challenges around multidimensional and multivariate data in computer graphics, image processing and data visualization, in particular with respect to compact representation and processing of increasingly large-scale data sets. Initially proposed as an extension of the concept of matrix rank for 3 and more dimensions, tensor decomposition methods have found applications in a remarkably wide range of disciplines. We briefly review the main concepts of tensor decompositions and their application to multidimensional visual data. Furthermore, we will include a first outlook on porting these techniques to multivariate data such as vector and tensor fields

    Lossy volume compression using Tucker truncation and thresholding

    Full text link
    Tensor decompositions, in particular the Tucker model, are a powerful family of techniques for dimensionality reduction and are being increasingly used for compactly encoding large multidimensional arrays, images and other visual data sets. In interactive applications, volume data often needs to be decompressed and manipulated dynamically; when designing data reduction and reconstruction methods, several parameters must be taken into account, such as the achievable compression ratio, approximation error and reconstruction speed. Weighing these variables in an effective way is challenging, and here we present two main contributions to solve this issue for Tucker tensor decompositions. First, we provide algorithms to efficiently compute, store and retrieve good choices of tensor rank selection and decompression parameters in order to optimize memory usage, approximation quality and computational costs. Second, we propose a Tucker compression alternative based on coefficient thresholding and zigzag traversal, followed by logarithmic quantization on both the transformed tensor core and its factor matrices. In terms of approximation accuracy, this approach is theoretically and empirically better than the commonly used tensor rank truncation method

    Extracció automàtica de metadades semàntiques d'imatges de biòpsies òptiques

    No full text
    corecore