602 research outputs found

    Moral Repair and the Moral Saints Problem

    Get PDF
    This article explores the forms of moral repair that the wrongdoer has to perform in an attempt to make amends for her past wrongdoing, with a focus on the issues of interpersonal moral repair; that is, what a wrongdoer can do to merit her victim‘s forgiveness and achieve reconciliation with her community. The article argues against the very general demands of atonement that amount to an obligation to stop being someone who commits wrongs—to become a moral saint—and suggests a new form of atonement that is more practical and useful in our everyday life

    Relationships and Respect for Persons

    Get PDF
    Many theorists writing on the aftermath of wrongdoing have been influenced by Trudy Govier’s emphasis on interpersonal relationships. But George Sher has recently challenged this talk of relationships. Read descriptively, he argues, claims about the interpersonal effects of wrongdoing are either exaggerated or false. Read normatively, relationships add nothing to more traditional moral theory. In this essay, I argue that Govier’s relational framework both avoids Sher’s dilemma and enables her to develop the notion of respect for persons in ways that improve upon traditional Kantian discussions

    Advocacy and Genuine Autonomy: The Lawyer's Role When the Client Has a Right to Do Wrong

    Get PDF
    Stephen L. Pepper argues that lawyers and clients often act together in ways that their moral convictions would prevent them from acting individually. In an attempt to address this problem, I explore the nature of the attorney's responsibility to help her client reach autonomous decisions. To do this, I review the work of some prominent medical ethicists on a parallel to Pepper's problem in doctor-patient relationships

    Cross layer techniques for flexible transport protocol using UDP-Lite over a satellite network

    Get PDF
    Traditional real-time multimedia and streaming services have utilised UDP over RTP. Wireless transmission, by its nature, may introduce a variable, sometimes high bit error ratio. Current transport layer protocols drop all corrupted packets, in contrast, protocols such as UDP-Lite allow error-resilient applications to be supported in the networking stack. This paper presents experimental quantitative performance metrics using H.264 and UDP Lite for the next generation transport of IP multimedia, and discusses the architectural implications for enhancing performance of a wireless and/or satellite environment

    The coalescing-branching random walk on expanders and the dual epidemic process

    Get PDF
    Information propagation on graphs is a fundamental topic in distributed computing. One of the simplest models of information propagation is the push protocol in which at each round each agent independently pushes the current knowledge to a random neighbour. In this paper we study the so-called coalescing-branching random walk (COBRA), in which each vertex pushes the information to kk randomly selected neighbours and then stops passing information until it receives the information again. The aim of COBRA is to propagate information fast but with a limited number of transmissions per vertex per step. In this paper we study the cover time of the COBRA process defined as the minimum time until each vertex has received the information at least once. Our main result says that if GG is an nn-vertex rr-regular graph whose transition matrix has second eigenvalue λ\lambda, then the COBRA cover time of GG is O(log⁥n)\mathcal O(\log n ), if 1−λ1-\lambda is greater than a positive constant, and O((log⁥n)/(1−λ)3))\mathcal O((\log n)/(1-\lambda)^3)), if 1−λ≫log⁥(n)/n1-\lambda \gg \sqrt{\log( n)/n}. These bounds are independent of rr and hold for 3≀r≀n−13 \le r \le n-1. They improve the previous bound of O(log⁥2n)O(\log^2 n) for expander graphs. Our main tool in analysing the COBRA process is a novel duality relation between this process and a discrete epidemic process, which we call a biased infection with persistent source (BIPS). A fixed vertex vv is the source of an infection and remains permanently infected. At each step each vertex uu other than vv selects kk neighbours, independently and uniformly, and uu is infected in this step if and only if at least one of the selected neighbours has been infected in the previous step. We show the duality between COBRA and BIPS which says that the time to infect the whole graph in the BIPS process is of the same order as the cover time of the COBRA proces

    DVB-RCS return link radio resource management for broadband satellite systems using fade mitigation techniques at ka band

    Get PDF
    Current Broadband Satellite systems supporting DVB-RCS at Ku band have static physical layer in order not to complicate their implementation. However at Ka band frequencies and above an adaptive physical layer wherein the physical layer parameters are dynamically modified on a per user basis is necessary to counteract atmospheric attenuation. Satellite Radio Resource Management (RRM) at the Medium Access Control (MAC) layer has become an important issue given the emphasis placed on Quality of Service (QoS) provided to the Users. The work presented here tackles the problem of Satellite RRM for Broadband Satellite systems using DVB-RCS where a fully adaptive physical layer is envisaged at Ka band frequencies. The impact of adaptive physical layer and user traffic conditions on the MAC layer functions is analyzed and an algorithm is proposed for the RRM process. Various physical layer issues associated with the resource management problem are also analyzed

    Satellite system performance assessment for in-flight entertainment and air traffic control

    Get PDF
    Concurrent satellite systems have been proposed for IFE (In-Flight Entertainment) communications, thus demonstrating the capability of satellites to provide multimedia access to users in aircraft cabin. At the same time, an increasing interest in the use of satellite communications for ATC (Air Traffic Control) has been motivated by the increasing load of traditional radio links mainly in the VHF band, and uses the extended capacities the satellite may provide. However, the development of a dedicated satellite system for ATS (Air Traffic Services) and AOC (Airline Operational Communications) seems to be a long-term perspective. The objective of the presented system design is to provide both passenger application traffic access (Internet, GSM) and a high-reliability channel for aeronautical applications using the same satellite links. Due to the constraints in capacity and radio bandwidth allocation, very high frequencies (above 20 GHz) are considered here. The corresponding design implications for the air interface are taken into account and access performances are derived using a dedicated simulation model. Some preliminary results are shown in this paper to demonstrate the technical feasibility of such system design with increased capacity. More details and the open issues will be studied in the future of this research work
    • 

    corecore