8 research outputs found

    Different outlet for preparing nano-TiO2 catalysts for the photodegradation of Black B dye in water

    Get PDF
    Two nano-titania catalysts were prepared using two economically varying titanium precursors: titanium tetrachloride (A) and titanium isopropoxide (B). The catalysts were calcined at temperatures of 500 °C, 600 °C and 700 °C and characterized using X-ray diffraction (XRD), electron diffraction (ED), BET surface properties and high resolution transmission microscopy (HRTEM). The calcined catalysts were found to differ markedly in their physical characters and TiO2 phases produced as well as their photocatalytic activities. The anatase titania phase diminished from 100% to 83% in TiO2A but from 64% to zero in TiO2B via temperature increase from 500 °C to 700 °C, due to transforming anatase to rutile. The brookite TiO2 phase only appeared (17%) in catalyst B500. In general, the catalyst of choice is A600 by virtue of many compositional, economical and catalytic advantages

    Impact of Sr addition on zirconia-alumina-supported Ni catalyst for CO<sub>x</sub>-free CH<sub>4</sub> production via CO<sub>2</sub> methanation

    No full text
    Zirconia-alumina-supported Ni (5Ni/10ZrO2+Al2O3) and Sr-promoted 5Ni/10ZrO2+Al2O3 are prepared, tested for carbon dioxide (CO2) methanation at 400 °C, and characterized by X-ray diffraction, X-ray photoelectron spectroscopy, surface area and porosity, infrared spectroscopy, and temperature-programmed reduction/desorption techniques. The CO2 methanation is found to depend on the dispersion of Nickel (Ni) sites as well as the extent of stabilization of CO2-interacted species. The Ni active sites are mainly derived from the reduction of ‘moderately interacted NiO species’. The dispersion of Ni over 1 wt % Sr-promoted 5Ni/10ZrO2+Al2O3 is 1.38 times that of the unpromoted catalyst, and it attains 72.5% CO2 conversion (against 65% over the unpromoted catalyst). However, increasing strontium (Sr) loading to 2 wt % does not affect the Ni dispersion much, but the concentration of strong basic sites is increased, which achieves 80.6% CO2 conversion. The 5Ni4Sr/10ZrO2+Al2O3 catalyst has the highest density of strong basic sites and the highest concentration of active sites with maximum Ni dispersion. This catalyst displays exceptional performance and achieves approximately 80% CO2 conversion and 70% methane (CH4) yield for up to 25 h on steam. The unique acidic–basic profiles composed of strong basic and moderate acid sites facilitate the sequential hydrogenation of formate species in the COx-free CH4 route
    corecore