12 research outputs found

    High-throughput detection of fusion genes in cancer using the Sequenom MassARRAY platform

    No full text
    Fusion genes have pivotal roles in the development and progression of human cancer and offer potential for rational drug design. Massively parallel sequencing has identified a panoply of in-frame expressed fusion genes, but early reports suggest that the majority of these are present at very low prevalence or are private events. Conventional methods for the identification of recurrent expressed fusion genes in large cohorts of cancers (eg fluorescence in situ hybridization (FISH) and reverse transcriptase PCR (RT-PCR)) are time consuming and prone to artifacts. Here, we describe a novel high-throughput strategy for the detection of recurrent fusion genes in cancer based on the Sequenom MassARRAY platform. Fusion genes were initially identified by massively parallel sequencing of breast cancer cell lines. For each fusion gene, two Sequenom probes were designed. Primary human breast cancers and cancer cell lines were interrogated for 10 fusion genes. Sensitivity, specificity, and predictive values of the MassARRAY method were then determined using FISH and qRT-PCR as the 'gold standard.' By combining two probes per fusion gene, the negative and positive predictive values were 100 and 71.4%, respectively. All fusion genes identified by massively parallel sequencing were accurately detected. No recurrent fusion genes were found. The MassARRAY-based approach described here may, therefore, be employed as a high-throughput screening tool for known fusion genes in human cancer. In keeping with other highly sensitive assays, further refinement of this technique is necessary to reduce the number of false-positive results. Laboratory Investigation (2011) 91, 1491-1501; doi:10.1038/labinvest.2011.110; published online 1 August 201

    INK4a-deficient human diploid fibroblasts are resistant to RAS-induced senescence

    No full text
    The CDKN2A tumour suppressor locus encodes two distinct proteins, p16(INK4a) and p14(ARF), both of which have been implicated in replicative senescence, the state of permanent growth arrest provoked in somatic cells by aberrant proliferative signals or by cumulative population doublings in culture. Here we describe primary fibroblasts from a member of a melanoma-prone family who is homozygous for an intragenic deletion in CDKN2A. Analyses of the resultant gene products imply that the cells are p16(INK4a) deficient but express physiologically relevant levels of a frameshift protein that retains the known functions of p14(ARF). Although they have a finite lifespan, the cells are resistant to arrest by oncogenic RAS. Indeed, ectopic expression of RAS and telomerase (hTERT) results in outgrowth of anchorage-independent colonies that have essentially diploid karyotypes and functional p53. We find that in human fibroblasts, ARF is not induced demonstrably by RAS, pointing to significant differences between the proliferative barriers implemented by the CDKN2A locus in different cell types or species

    Tiling Path Genomic Profiling of Grade 3 Invasive Ductal Breast Cancers

    No full text
    Purpose: To characterize the molecular genetic profiles of grade 3 invasive ductal carcinomas of no special type using high-resolution microarray-based comparative genomic hybridization (aCGH) and to identify recurrent amplicons harboring putative therapeutic targets associated with luminal, HER-2, and basal-like tumor phenotypes. Experimental Design: Ninety-five grade 3 invasive ductal carcinomas of no special type were classified into luminal, HER-2, and basal-like subgroups using a previously validated immunohistochemical panel. Tumor samples were microdissected and subjected to aCGH using a tiling path 32K BAC array platform. Selected regions of recurrent amplification were validated by means of in situ hybridization. Expression of genes pertaining to selected amplicons was investigated using quantitative real-time PCR and gene silencing was done using previously validated short hairpin RNA constructs. Results: We show that basal-like and HER-2 tumors are characterized by "sawtooth" and "firestorm" genetic patterns, respectively, whereas luminal cancers were more heterogeneous. Apart from confirming known amplifications associated with basal-like (1q21, 10p, and 12p), luminal (8p12, 11q13, and 11q14), and HER-2 (17q12) cancers, we identified previously unreported recurrent amplifications associated with each molecular subgroup: 19q12 in basal-like, 1q32.1 in luminal, and 14q12 in HER-2 cancers. PPM1D gene amplification (17q23.2) was found in 20% and 8% of HER-2 and luminal cancers, respectively. Silencing of PPM1D by short hairpin RNA resulted in selective loss of viability in tumor cell lines harboring the 17q23.2 amplification. Conclusions: Our results show the power of aCGH analysis in unraveling the genetic profiles of specific subgroups of cancer and for the identification of novel therapeutic targets

    Resistance to therapy caused by intragenic deletion in BRCA2

    No full text
    Cells with loss of BRCA2 function are defective in homologous recombination ( HR) and are highly sensitive to inhibitors of poly( ADP- ribose) polymerase ( PARP)(1,2), which provides the basis for a new therapeutic approach. Here we show that resistance to PARP inhibition can be acquired by deletion of a mutation in BRCA2. We derived PARP- inhibitor- resistant ( PIR) clones from the human CAPAN1 pancreatic cancer cell line, which carries the protein- truncating c.6174delT frameshift mutation. PIR clones could form DNA- damage- induced RAD51 nuclear foci and were able to limit genotoxin- induced genomic instability, both hallmarks of a competent HR pathway. New BRCA2 isoforms were expressed in the resistant lines as a result of intragenic deletion of the c.6174delT mutation and restoration of the open reading frame ( ORF). Reconstitution of BRCA2- deficient cells with these revertant BRCA2 alleles rescued PARP inhibitor sensitivity and HR deficiency. Most of the deletions in BRCA2 were associated with small tracts of homology, and possibly arose from error-prone repair caused by BRCA2 deficiency(3,4). Similar ORF-restoring mutations were present in carboplatin- resistant ovarian tumours from c.6174delT mutation carriers. These observations have implications for understanding drug resistance in BRCA mutation carriers as well as in defining functionally important domains within BRCA2

    Selection of A Human Chromosome-21 Enriched Yac Sub-library Using A Chromosome-specific Composite Probe

    No full text
    The subdivision Of total genomic human yeast artificial chromosome (YAC) libraries into specific chromosome clone collections will greatly facilitate the construction of an integrated genetic, physical and transcriptional map of the genome. We report the isolation of 388 YAC clones from a human library with an average insert size of 620 kilobases (kb) by the hybridization of a composite chromosome 21 probe to a high-density array of YAC clones. Roughly half of these clones hybridize to chromosome 21 by fluorescence in situ hybridization. These clones represent a twofold coverage of the chromosome. The technique offers the potential of sub-dividing whole genomic YAC libraries into their chromosomal elements to produce high-resolution tools for genome mapping
    corecore