3 research outputs found

    Uncooled bolometer response of a low noise La2/3Sr1/3MnO3 thin film

    Full text link
    We report measurements of the optical responses of a La2/3Sr1/3MnO3 (LSMO) sample at a wavelength of 533 nm in the 300-400 K range. The 200 nm thick film was grown by pulsed laser deposition on (100) SrTiO3 substrate and showed remarkably low noise. At 335 K the temperature coefficient of the resistance of a 100 micrometers wide 300 micrometers long LSMO line was 0.017 K-1 and the normalized Hooge parameter was 9 e-30 m3, which is among the lowest reported values. We then measured an optical sensitivity at I = 5 mA of 10.4 V.W-1 and corresponding noise equivalent power (NEP) values of 8.1 e-10 W.Hz-1/2 and 3.3 e-10 W. Hz-1/2 at 30 Hz and above 1kHz, respectively. Simple considerations on bias current conditions and thermal conductance G are finally given for further sensitivity improvements using LSMO films. The performances were indeed demonstrated on bulk substrates with G of 10-3 W.K-1. One could expect a NEP reduction by three orders of magnitude if a membrane-type geometry was used, which makes this LSMO device competitive against commercially available uncooled bolometers.Comment: 15 pages. Accepted for publication in Appl. Phys. Let

    Modulated optical reflectance measurements on La2/3Sr1/3MnO3 thin films

    Full text link
    The modulated optical reflectance (MOR) measurement technique was applied to colossal magnetoresistive materials, in particular, La2/3Sr1/3MnO3 (LSMO) thin films. The contactless measurement scheme is prospective for many applications spanning from materials characterization to new devices like reading heads for magnetically recorded media. A contrasted room temperature surface scan of a 100 microns wide 400 microns long bridge patterned into LSMO film provided preliminary information about the film homogeneity. Then the temperature was varied between 240 and 400 K, i.e. through the ferromagnetic to paramagnetic transition. A clear relation between the MOR signal measured as function of the temperature and the relative derivative of the resistivity up to the Curie temperature was observed. This relationship is fundamental for the MOR technique and its mechanism was explored in the particular case of LSMO. Analysis in the framework of the Drude model showed that, within certain conditions, the measured MOR signal changes are correlated to changes in the charge carrier concentration.Comment: 29 pages, accepted for publication in J. Appl. Phy

    Vortex Fluctuations in High-Tc Films: Flux Noise Spectrum and Complex Impedance

    Full text link
    The flux noise spectrum and complex impedance for a 500 {\AA} thick YBCO film are measured and compared with predictions for two dimensional vortex fluctuations. It is verified that the complex impedance and the flux noise spectra are proportional to each other, that the logarithm of the flux noise spectra for different temperatures has a common tangent with slope ≈−1\approx -1, and that the amplitude of the noise decreases as d−3d^{-3}, where dd is the height above the film at which the magnetic flux is measured. A crossover from normal to anomalous vortex diffusion is indicated by the measurements and is discussed in terms of a two-dimensional decoupling.Comment: 5 pages including 4 figures in two columns, to appear in Phys. Rev. Let
    corecore