134 research outputs found

    Heterogeneity of mouse spleen dendritic cells: in vivo phagocytic activity, expression of macrophage markers, and subpopulation turnover

    Get PDF
    In the normal mouse spleen, two distinct populations of dendritic cells (DC) are present that differ in microanatomical location. The major population of marginal DC is found in the "marginal zone bridging channels" and extends into the red pulp. The interdigitating cells (IDC) are localized in the T cell areas in the white pulp. The aim of the present study was to characterize these two splenic DC populations with regard to their phenotype, in vivo phagocytic function, and turnover. Both marginal DC and IDC are CD11c+ and CD13+, but only IDC are NLDC-145+ and CD8alpha+. Notably, both populations, when freshly isolated, express the macrophage markers F4/80, BM8, and Mac-1. To study the phagocytic capacity of these cells, we employed the macrophage "suicide" technique by injecting liposomes loaded with clodronate i.v. Marginal DC, but not IDC, were eliminated by this treatment. Phagocytosis of DiI-labeled liposomes by DC confirmed this finding. The two DC populations differed significantly with regard to their turnover rates, as studied in a transgenic mouse model of conditional depletion of DC populations with high turnover. In these mice, marginal DC were completely eliminated, but the IDC population remained virtually intact. From these data we conclude that the marginal DC population has a high turnover, in contrast to the IDC population. Taken together, the present results indicate that marginal DC and IDC represent two essentially distinct populations of DC in the mouse spleen. They differ not only in location, but also in phenotype, phagocytic ability, and turnover

    Network structure and taxonomic composition of tritrophic communities of Fagaceae, cynipid gallwasps and parasitoids in Sichuan, China

    Get PDF
    A key question in insect community ecology is whether parasitoid assemblages are structured by the food plants of their herbivore hosts. Tritrophic communities centred on oak-feeding cynipid gallwasps are one of the best-studied tritrophic insect communities. Previous work suggests that host plant identity is a much stronger predictor of oak–cynipid interactions than of cynipid–parasitoid interactions. However, these relationships have not been formally quantified. We reason that the potential for ‘bottom-up’ effects should increase with host plant phylogenetic diversity. We, therefore, generated quantified interaction network data for previously unstudied tritrophic cynipid communities in Sichuan, China, where, in addition to Quercus, cynipid host plants include Castanea, Castanopsis and Lithocarpus. We characterise these communities taxonomically and compare the extent to which host plant taxonomy predicts plant–herbivore and plant–parasitoid associations. We sampled 42,620 cynipid galls of 176 morphotypes from 23 host plant species, yielding over 4500 specimens of 64 parasitoid morphospecies. Many parasitoids were identifiable to chalcidoid taxa present in other Holarctic oak cynipid communities, with the addition of Cynipencyrtus (Cynipencyrtidae). As elsewhere, Sichuan parasitoid assemblages were dominated by generalists. Gallwasp–plant interaction networks were significantly more modular than parasitoid–plant association networks. Gallwasps were significantly more specialised to host plants (i.e. had higher mean d' values) than parasitoids. Parasitoid assemblages nevertheless showed significant plant-associated beta diversity, with a dominant turnover component. We summarise parallels between our study and other Fagaceae-associated cynipid communities and discuss our findings in light of the processes thought to structure tritrophic interactions centred on endophytic insect herbivores

    Network structure and taxonomic composition of tritrophic communities of Fagaceae, cynipid gallwasps and parasitoids in Sichuan, China

    Get PDF
    A key question in insect community ecology is whether parasitoid assemblages are structured by the food plants of their herbivore hosts. Tritrophic communities centred on oak‐feeding cynipid gallwasps are one of the best‐studied tritrophic insect communities. Previous work suggests that host plant identity is a much stronger predictor of oak–cynipid interactions than of cynipid–parasitoid interactions. However, these relationships have not been formally quantified. We reason that the potential for ‘bottom‐up’ effects should increase with host plant phylogenetic diversity. We, therefore, generated quantified interaction network data for previously unstudied tritrophic cynipid communities in Sichuan, China, where, in addition to Quercus, cynipid host plants include Castanea, Castanopsis and Lithocarpus. We characterise these communities taxonomically and compare the extent to which host plant taxonomy predicts plant–herbivore and plant–parasitoid associations. We sampled 42,620 cynipid galls of 176 morphotypes from 23 host plant species, yielding over 4500 specimens of 64 parasitoid morphospecies. Many parasitoids were identifiable to chalcidoid taxa present in other Holarctic oak cynipid communities, with the addition of Cynipencyrtus (Cynipencyrtidae). As elsewhere, Sichuan parasitoid assemblages were dominated by generalists. Gallwasp–plant interaction networks were significantly more modular than parasitoid–plant association networks. Gallwasps were significantly more specialised to host plants (i.e. had higher mean d' values) than parasitoids. Parasitoid assemblages nevertheless showed significant plant‐associated beta diversity, with a dominant turnover component. We summarise parallels between our study and other Fagaceae‐associated cynipid communities and discuss our findings in light of the processes thought to structure tritrophic interactions centred on endophytic insect herbivores

    Network structure and taxonomic composition of tritrophic communities of Fagaceae, cynipid gallwasps and parasitoids in Sichuan, China

    Get PDF
    A key question in insect community ecology is whether parasitoid assemblages are structured by the food plants of their herbivore hosts. Tritrophic communities centred on oak‐feeding cynipid gallwasps are one of the best‐studied tritrophic insect communities. Previous work suggests that host plant identity is a much stronger predictor of oak–cynipid interactions than of cynipid–parasitoid interactions. However, these relationships have not been formally quantified. We reason that the potential for ‘bottom‐up’ effects should increase with host plant phylogenetic diversity. We, therefore, generated quantified interaction network data for previously unstudied tritrophic cynipid communities in Sichuan, China, where, in addition to Quercus, cynipid host plants include Castanea, Castanopsis and Lithocarpus. We characterise these communities taxonomically and compare the extent to which host plant taxonomy predicts plant–herbivore and plant–parasitoid associations. We sampled 42,620 cynipid galls of 176 morphotypes from 23 host plant species, yielding over 4500 specimens of 64 parasitoid morphospecies. Many parasitoids were identifiable to chalcidoid taxa present in other Holarctic oak cynipid communities, with the addition of Cynipencyrtus (Cynipencyrtidae). As elsewhere, Sichuan parasitoid assemblages were dominated by generalists. Gallwasp–plant interaction networks were significantly more modular than parasitoid–plant association networks. Gallwasps were significantly more specialised to host plants (i.e. had higher mean d' values) than parasitoids. Parasitoid assemblages nevertheless showed significant plant‐associated beta diversity, with a dominant turnover component. We summarise parallels between our study and other Fagaceae‐associated cynipid communities and discuss our findings in light of the processes thought to structure tritrophic interactions centred on endophytic insect herbivores

    Metastatic gallbladder adenocarcinoma with signet-ring cells: A case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Signet-ring cell carcinoma is a rare and aggressive variant of mucinous adenocarcinoma. Only a few cases of gallbladder adenocarcinoma with signet-ring cells have been reported and because of this there is a lack of knowledge about the behavior and biology of this pathology.</p> <p>Case presentation</p> <p>We present the case of a 63-year-old Arab man with gallbladder signet-ring cell adenocarcinoma. He had an elective cholecystectomy and refused chemotherapy. Two months later, a small hepatic metastatic nodule was found, and nine months later he presented with multiple metastases in the liver, lymphatic nodes, both pleuras, peritoneum and subcutaneous tissue.</p> <p>Conclusion</p> <p>The proliferation of signet-ring cells in a gallbladder adenocarcinoma worsens the prognosis of an already adverse neoplasm. New lines of treatment in chemotherapy, such as cisplatin, or new biological therapy, such as monoclonal antibody c-myc oncogene, should be encouraged to improve the survival and life quality of these oncologic patients.</p

    Increased blood pressure in adult offspring of families with Balkan Endemic Nephropathy: a prospective study

    Get PDF
    BACKGROUND: Previous studies have linked smaller kidney dimensions to increased blood pressure. However, patients with Balkan Endemic Nephropathy (BEN), whose kidneys shrink during the course of the disease, do not manifest increased blood pressure. The authors evaluated the relationship between kidney cortex width, kidney length, and blood pressure in the offspring of BEN patients and controls. METHODS: 102 offspring of BEN patients and 99 control offspring of non-BEN hospital patients in the Vratza District, Bulgaria, were enrolled in a prospective study and examined twice (2003/04 and 2004/05). Kidney dimensions were determined using ultrasound, blood pressure was measured, and medical information was collected. The parental disease of BEN was categorized into three groups: mother, father, or both parents. Repeated measurements were analyzed with mixed regression models. RESULTS: In all participants, a decrease in minimal kidney cortex width of 1 mm was related to an increase in systolic blood pressure of 1.4 mm Hg (p = 0.005). There was no association between kidney length and blood pressure. A maternal history of BEN was associated with an increase in systolic blood pressure of 6.7 mm Hg (p = 0.03); paternal BEN, +3.2 mm Hg (p = 0.35); or both parents affected, +9.9 mm Hg (p = 0.002). There was a similar relation of kidney cortex width and parental history of BEN with pulse pressure; however, no association with diastolic blood pressure was found. CONCLUSION: In BEN and control offspring, a smaller kidney cortex width predisposed to higher blood pressure. Unexpectedly, a maternal history of BEN was associated with average increased systolic blood pressure in offspring

    A review of the international early recommendations for departments organization and cancer management priorities during the global COVID-19 pandemic: applicability in low- and middle-income countries.

    Get PDF
    Coronavirus disease 2019 (COVID-19) is an infectious disease caused by a new virus that has never been identified in humans before. COVID-19 caused at the time of writing of this article, 2.5 million cases of infections in 193 countries with 165,000 deaths, including two-third in Europe. In this context, Oncology Departments of the affected countries had to adapt quickly their health system care and establish new organizations and priorities. Thus, numerous recommendations and therapeutic options have been reported to optimize therapy delivery to patients with chronic disease and cancer. Obviously, while these cancer care recommendations are immediately applicable in Europe, they may not be applicable in certain emerging and low- and middle-income countries (LMICs). In this review, we aimed to summarize these international guidelines in accordance with cancer types, making a synthesis for daily practice to protect patients, staff and tailor anti-cancer therapy delivery taking into account patients/tumour criteria and tools availability. Thus, we will discuss their applicability in the LMICs with different organizations, limited means and different constraints

    Apoptosis of Purified CD4+ T Cell Subsets Is Dominated by Cytokine Deprivation and Absence of Other Cells in New Onset Diabetic NOD Mice

    Get PDF
    BACKGROUND: Regulatory T cells (Treg) play a significant role in immune homeostasis and self-tolerance. Excessive sensitivity of isolated Treg to apoptosis has been demonstrated in NOD mice and humans suffering of type 1 diabetes, suggesting a possible role in the immune dysfunction that underlies autoimmune insulitis. In this study the sensitivity to apoptosis was measured in T cells from new onset diabetic NOD females, comparing purified subsets to mixed cultures. PRINCIPAL FINDINGS: Apoptotic cells are short lived in vivo and death occurs primarily during isolation, manipulation and culture. Excessive susceptibility of CD25(+) T cells to spontaneous apoptosis is characteristic of isolated subsets, however disappears when death is measured in mixed splenocyte cultures. In variance, CD25(-) T cells display balanced sensitivity to apoptosis under both conditions. The isolation procedure removes soluble factors, IL-2 playing a significant role in sustaining Treg viability. In addition, pro- and anti-apoptotic signals are transduced by cell-to-cell interactions: CD3 and CD28 protect CD25(+) T cells from apoptosis, and in parallel sensitize naïve effector cells to apoptosis. Treg viability is modulated both by other T cells and other subsets within mixed splenocyte cultures. Variations in sensitivity to apoptosis are often hindered by fast proliferation of viable cells, therefore cycling rates are mandatory to adequate interpretation of cell death assays. CONCLUSIONS: The sensitivity of purified Treg to apoptosis is dominated by cytokine deprivation and absence of cell-to-cell interactions, and deviate significantly from measurements in mixed populations. Balanced sensitivity of naïve/effector and regulatory T cells to apoptosis in NOD mice argues against the concept that differential susceptibility affects disease evolution and progression
    corecore