9 research outputs found

    Hierarchical binding of copperII to N-truncated Ab4–16 peptide

    Get PDF
    N-Truncated Ab4–42 displays a high binding affinity with CuII. A mechanistic scheme of the interactions between Ab4–42 and CuII has been proposed using a fluorescence approach. The timescales of different conversion steps were determined. This kinetic mechanism indicates the potential synaptic functions of Ab4–42 during neurotransmission

    Electrospray-Induced Mass Spectrometry Is Not Suitable for Determination of Peptidic Cu(II) Complexes

    Get PDF
    The toolset of mass spectrometry (MS) is still expanding, and the number of metal ion complexes researched this way is growing. The Cu(II) ion forms particularly strong peptide complexes of biological interest which are frequent objects of MS studies, but quantitative aspects of some reported results are at odds with those of experiments performed in solution. Cu(II) complexes are usually characterized by fast ligand exchange rates, despite their high affinity, and we speculated that such kinetic lability could be responsible for the observed discrepancies. In order to resolve this issue, we selected peptides belonging to the ATCUN family characterized with high and thoroughly determined Cu(II) binding constants and re-estimated them using two ESI-MS techniques: standard conditions in combination with serial dilution experiments and very mild conditions for competition experiments. The sample acidification, which accompanies the electrospray formation, was simulated with the pH–jump stopped-flow technique. Our results indicate that ESI-MS should not be used for quantitative studies of Cu(II)–peptide complexes because the electrospray formation process compromises the entropic contribution to the complex stability, yielding underestimations of complex stability constants

    Gly-His-Thr-Asp-Amide, an Insulin-Activating Peptide from the Human Pancreas Is a Strong Cu(II) but a Weak Zn(II) Chelator

    No full text
    The Cu(II) and Zn(II) binding abilities of Gly-His-Thr-Asp-amide (GHTD-am), a tetrapeptide coreleased from the pancreas along with insulin, were studied using UV-vis and circular dichroism spectroscopies, potentiometry, and calorimetry. GHTD-am is a very strong Cu(II) chelator, forming a three-nitrogen complex with a conditional affinity constant C K at pH 7.4 of 4.5 × 10^12 M^-1. The fourth coordination site can be occupied by a solvent molecule or a ternary ligand, such as imidazole, with C K on the order of several hundred reciprocal molar. The Zn(II) binding ability of GHTD-am is relatively weak, with C K values at pH 7.4 of 3.0 × 10^4 and 2.0 × 10^3 M-1 for the first and second GHTD-am molecule coordinated, respectively. These results are discussed in light of the modes of interactions of Zn(II) and Cu(II) ions with insulin. A direct effect of GHTD-am on the Zn(II) interactions with insulin is unlikely, but its Cu(II) complex may have a biological relevance because of its high affinity and ability to form ternary complexes

    Probing the Structure and Function of the Cytosolic Domain of the Human Zinc Transporter ZnT8 with Nickel(II) Ions

    No full text
    The human zinc transporter ZnT8 provides the granules of pancreatic β-cells with zinc (II) ions for assembly of insulin hexamers for storage. Until recently, the structure and function of human ZnTs have been modelled on the basis of the 3D structures of bacterial zinc exporters, which form homodimers with each monomer having six transmembrane α-helices harbouring the zinc transport site and a cytosolic domain with an α,β structure and additional zinc-binding sites. However, there are important differences in function as the bacterial proteins export an excess of zinc ions from the bacterial cytoplasm, whereas ZnT8 exports zinc ions into subcellular vesicles when there is no apparent excess of cytosolic zinc ions. Indeed, recent structural investigations of human ZnT8 show differences in metal binding in the cytosolic domain when compared to the bacterial proteins. Two common variants, one with tryptophan (W) and the other with arginine (R) at position 325, have generated considerable interest as the R-variant is associated with a higher risk of developing type 2 diabetes. Since the mutation is at the apex of the cytosolic domain facing towards the cytosol, it is not clear how it can affect zinc transport through the transmembrane domain. We expressed the cytosolic domain of both variants of human ZnT8 and have begun structural and functional studies. We found that (i) the metal binding of the human protein is different from that of the bacterial proteins, (ii) the human protein has a C-terminal extension with three cysteine residues that bind a zinc(II) ion, and (iii) there are small differences in stability between the two variants. In this investigation, we employed nickel(II) ions as a probe for the spectroscopically silent Zn(II) ions and utilised colorimetric and fluorimetric indicators for Ni(II) ions to investigate metal binding. We established Ni(II) coordination to the C-terminal cysteines and found differences in metal affinity and coordination in the two ZnT8 variants. These structural differences are thought to be critical for the functional differences regarding the diabetes risk. Further insight into the assembly of the metal centres in the cytosolic domain was gained from potentiometric investigations of zinc binding to synthetic peptides corresponding to N-terminal and C-terminal sequences of ZnT8 bearing the metal-coordinating ligands. Our work suggests the involvement of the C-terminal cysteines, which are part of the cytosolic domain, in a metal chelation and/or acquisition mechanism and, as now supported by the high-resolution structural work, provides the first example of metal-thiolate coordination chemistry in zinc transporters

    Key Intermediate Species Reveal the Copper(II)‐Exchange Pathway in Biorelevant ATCUN/NTS Complexes

    Get PDF
    The amino-terminal copper and nickel/N-terminal site (ATCUN/NTS) present in proteins and bioactive peptides exhibits high affinity towards CuII ions and have been implicated in human copper physiology. Little is known, however, about the rate and exact mechanism of formation of such complexes. We used the stopped-flow and microsecond freeze-hyperquenching (MHQ) techniques supported by steady-state spectroscopic and electrochemical data to demonstrate the formation of partially coordinated intermediate CuII complexes formed by glycyl-glycyl-histidine (GGH) peptide, the simplest ATCUN/NTS model. One of these novel intermediates, characterized by two-nitrogen coordination, t1/2 ≈100 ms at pH 6.0 and the ability to maintain the CuII /CuI redox pair is the best candidate for the long-sought reactive species in extracellular copper transport

    The rates of Cu(ii)-ATCUN complex formation. Why so slow?

    No full text
    We used a series of modified/substituted GGH analogues to investigate the kinetics of Cu(ii) binding to ACTUN peptides. Rules for rate modulation by 1st and 2nd sphere interactions were established, providing crucial insight into elucidation of the reaction mechanism and its contribution to biological copper transport.Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.BT/Biocatalysi
    corecore