13 research outputs found

    Arylazanylpyrazolone Derivatives as Inhibitors of Mutant Superoxide Dismutase 1 Dependent Protein Aggregation for the Treatment of Amyotrophic Lateral Sclerosis

    No full text
    The arylsulfanylpyrazolone and aryloxanylpyrazolone scaffolds previously were reported to inhibit Cu/Zn superoxide dismutase 1 dependent protein aggregation and to extend survival in the ALS mouse model. However, further evaluation of these compounds indicated weak pharmacokinetic properties and a relatively low maximum tolerated dose. On the basis of an ADME analysis, a new series of compounds, the arylazanylpyrazolones, has been synthesized, and structure–activity relationships were determined. The SAR results showed that the pyrazolone ring is critical to cellular protection. The NMR, IR, and computational analyses suggest that phenol-type tautomers of the pyrazolone ring are the active pharmacophore with the arylazanylpyrazolone analogues. A comparison of experimental and calculated IR spectra is shown to be a valuable method to identify the predominant tautomer

    ADME-Guided Design and Synthesis of Aryloxanyl Pyrazolone Derivatives To Block Mutant Superoxide Dismutase 1 (SOD1) Cytotoxicity and Protein Aggregation: Potential Application for the Treatment of Amyotrophic Lateral Sclerosis

    No full text
    Amyotrophic lateral sclerosis (ALS) is an orphan neurodegenerative disease currently without a cure. The arylsulfanyl pyrazolone (ASP) scaffold was one of the active scaffolds identified in a cell-based high throughput screening assay targeting mutant Cu/Zn superoxide dismutase 1 (SOD1) induced toxicity and aggregation as a marker for ALS. The initial ASP hit compounds were potent and had favorable ADME properties but had poor microsomal and plasma stability. Here, we identify the microsomal metabolite and describe synthesized analogues of these ASP compounds to address the rapid metabolism. Both in vitro potency and pharmacological properties of the ASP scaffold have been dramatically improved via chemical modification to the corresponding sulfone and ether derivatives. One of the ether analogues (<b>13</b>), with superior potency and in vitro pharmacokinetic properties, was tested in vivo for its pharmacokinetic profile, brain penetration, and efficacy in an ALS mouse model. The analogue showed sustained blood and brain levels in vivo and significant activity in the mouse model of ALS, thus validating the new aryloxanyl pyrazolone scaffold as an important novel therapeutic lead for the treatment of this neurodegenerative disorder

    Proteasome Activation is a Mechanism for Pyrazolone Small Molecules Displaying Therapeutic Potential in Amyotrophic Lateral Sclerosis

    No full text
    Amyotrophic lateral sclerosis (ALS) is a progressive and ultimately fatal neurodegenerative disease. Pyrazolone containing small molecules have shown significant disease attenuating efficacy in cellular and murine models of ALS. Pyrazolone based affinity probes were synthesized to identify high affinity binding partners and ascertain a potential biological mode of action. Probes were confirmed to be neuroprotective in PC12-SOD1<sup>G93A</sup> cells. PC12-SOD1<sup>G93A</sup> cell lysates were used for protein pull-down, affinity purification, and subsequent proteomic analysis using LC-MS/MS. Proteomics identified the 26S proteasome regulatory subunit 4 (PSMC1), 26S proteasome regulatory subunit 6B (PSMC4), and T-complex protein 1 (TCP-1) as putative protein targets. Coincubation with appropriate competitors confirmed the authenticity of the proteomics results. Activation of the proteasome by pyrazolones was demonstrated in the absence of exogenous proteasome inhibitor and by restoration of cellular protein degradation of a fluorogenic proteasome substrate in PC12-SOD1<sup>G93A</sup> cells. Importantly, supplementary studies indicated that these molecules do not induce a heat shock response. We propose that pyrazolones represent a rare class of molecules that enhance proteasomal activation in the absence of a heat shock response and may have therapeutic potential in ALS
    corecore