10 research outputs found

    Corrigendum: Synthesis and cytotoxic activity of novel indole derivatives and their in silico screening on spike glycoprotein of sars-cov-2

    Get PDF
    The authors Kaliappillai Vijayakumar, Magda H. Abdellattif, Mohd Shahbaaz were not included in the published article and the authors Daoud Ali, Saud Alarifi, and Amal Alotaibi were mistakenly included in the author list. The author list has been corrected throughout the article and in the Author Contributions statement. In addition, the funding information was incorrect and has been amended to include funding for Magda H. Abdellattif. The corrected Author Contributions, Funding and Acknowledgments statements appears below. The authors apologize for this error and state that this does not change the scientific conclusions of the article in any way. The original article has been updated

    Synthesis and antibacterial activity of pyrano[3,2-g]chromene-4,6-dione derivatives and their molecular docking and DFT calculation studies

    No full text
    Pyran-4-one and chromenone are well known bioactive compounds, particularly antimicrobial activity. Present study investigation antibacterial activity of pyranone connected chromenone derivatives. New synthesis of pyrano[3,2-g]chromene-4,6-dione derivatives were synthesized via catalysis free eco-friendly method. Synthesized compounds were characterized by FTIR, 1H NMR, 13C NMR, and mass spectral analysis. An entirely new synthesis of pyrano[3,2-g]chromene-4,6-dione derivatives (1a–o) were studied for their in vitro antibacterial properties. The gram-positive bacterium B. cereus was thought to be the most sensitive of the studied microorganisms, and compounds 1f, 1 g, 1 k, 1 l, and 1o demonstrated the best antibacterial action. The results of the antibacterial activities would suggest that 1 g was more effective against B. cereus (MIC: 0.5 μg/mL) than other compounds and Ciprofloxacin (MIC: 2 μg/mL). Against B. cereus bacterial pathogens, compound 1 g demonstrated exceptional antibacterial activity. The compound 1 g and Ciprofloxacin docked with 5V8E protein action of compound 1 g (-7.2 kcal/mol) and ciprofloxacin (-3.2 kcal/mol) is quite potent, and it also showed greater binding affinity. DFT calculation was well support the performance of energy gap between low and highly active compounds for 1 k (ΔE gap = 0.15 eV) and 1 g (ΔE gap = 0.16 eV), respectively. The lead molecules were used for antibacterial agent

    Grindstone Chemistry: Design, One-Pot Synthesis, and Promising Anticancer Activity of Spiro[acridine-9,2′-indoline]-1,3,8-trione Derivatives against the MCF-7 Cancer Cell Line

    No full text
    In this study, the synthesis of one-pot 10-phenyl-3,4,6,7-tetrahydro-1H-spiro [acridine-9,2′-indoline]-1,3,8-trione derivatives was achieved via a four-component cyclocondensation reaction, which was carried out in solvent-free conditions, and using p-toluenesulfonic acid (p-TSA) as a catalyst. The product was confirmed by FT-IR, 1H-NMR, 13C-NMR, mass spectra, and elemental analysis. Furthermore, the anticancer activity was screened for all compounds. Among these compounds, compound 1c was more effective (GI50 0.01 µm) against MCF-7 cancer cell lines than standard and other compounds. Therefore, the objective of this study was achieved with a few promising molecules having been demonstrated to be potential anticancer agents

    Synthesis and Characterization of Aminophosphonate Containing Chitosan Polymer Derivatives: Investigations of Cytotoxic Activity and in Silico Study of SARS-CoV-19

    No full text
    Chitosan is broadly used as a biological material since of its excellent biological activities. This work describes investigations of chitosan interaction with SARS-CoV-2, which is occupied by human respiratory epithelial cells through communication with the human angiotension-converting enzyme II (ACE2). The β-chitosan derivatives are synthesized and characterized by FT-IR, nuclear magnetic resonance (1H and 13C NMR), mass spectrometry, X-ray diffraction, TGA, DSC, and elemental analysis. The β-chitosan derivatives were screened for cytotoxic activity against the HepG2 and MCF-7 (breast) cancer cell lines. Compound 1h (GI50 0.02 µM) is moderately active against the HepG2 cancer cell line, and Compound 1c is highly active (GI50 0.01 µM) against the MCF-7 cancer cell line. In addition, chitosan derivatives (1a–1j) docking against the SARS coronavirus are found by in-silico docking analysis. The findings show that compound 1c exhibits notable inhibition ability compared with other compounds, with a binding energy value of −7.9 kcal/mol. Based on the molecular docking results, the chitosan analog is proposed to be an alternative antiviral agent for SARS-CoV2

    Synthesis and Cytotoxic Activity of Novel Indole Derivatives and Their in silico Screening on Spike Glycoprotein of SARS-CoV-2

    Get PDF
    This work investigated the interaction of indole with SARS-CoV-2. Indole is widely used as a medical material owing to its astounding biological activities. Indole and its derivatives belong to a significant category of heterocyclic compounds that have been used as a crucial component for several syntheses of medicine. A straightforward one-pot three-component synthesis of indole, coupled with Mannich base derivatives 1a–1j, was synthesized without a catalyst. The products were confirmed by IR, 1H-NMR, 13C-NMR, mass spectra, and elemental analysis. The indole derivatives were tested for cytotoxic activity, using three cancer cell lines and normal cell lines of Human embryonic kidney cell (HEK293), liver cell (LO2), and lung cell (MRC5) by MTT assay using doxorubicin as the standard drug. The result of cytotoxicity indole compound 1c (HepG2, LC50−0.9 μm, MCF−7, LC50−0.55 μm, HeLa, LC50−0.50 μm) was found to have high activity compared with other compounds used for the same purpose. The synthesized derivatives have revealed their safety by exhibiting significantly less cytotoxicity against the normal cell line (HEK-293), (LO2), and (MRC5) with IC50 > 100 μg/ml. Besides, we report an in silico study with spike glycoprotein (SARS-CoV-2-S). The selective molecules of compound 1c exhibited the highest docking score −2.808 (kcal/mol) compared to other compounds. This research work was successful in synthesizing a few compounds with potential as anticancer agents. Furthermore, we have tried to emphasize the anticipated role of indole scaffolds in designing and discovering the much-awaited anti-SARS CoV-2 therapy by exploring the research articles depicting indole moieties as targeting SARS CoV-2 coronavirus

    Aloe Vera Extract-Mediated CuO NPs as Catalysts for the Synthesis of 4-Hydroxy-3-Methoxybenzaldehyde-Connected Piperidine Derivatives and Their Antibacterial Activity

    No full text
    We have designed an easy, affordable, and eco-friendly technique for Schiff base preparation of vanillin-coupled piperidine analogues using CuO NPs as a catalyst. Using a green chemistry strategy using copper oxide nanoparticles (CuO NPs) as a catalyst, a unique one-pot synthesis of Schiff base vanillin-linked piperidine derivatives (2, 2a-2j) may be generated, with a potential yield in a short reaction time. The CuO NPs were synthesized with the aloe vera extract. The newly synthesized piperidin-4-ylidene analogues were investigated using FT-IR, NMR (1H, 13C), mass spectra, and elemental analysis. The morphology of piperidine derivatives was studied using XRD and TEM. The compound 2a-2j was evaluated for antibacterial activity against gram +ve and gram −ve bacteria. Compound 2d is exceptionally active against (5.0 μg/mL, E. coli), and 2c is very effective against (4.0 μg/mL, L. plantarum) when compared to reference drug and other Schiff base of vanillin-associated piperidine derivatives. Finally, we concluded the compounds 2c and 2d have strong antibacterial activity and can be used as antibacterial drugs in the future
    corecore