5 research outputs found

    Benzimidazoles: Novel Mycobacterial Gyrase Inhibitors from Scaffold Morphing

    No full text
    Type II topoisomerases are well conserved across the bacterial species, and inhibition of DNA gyrase by fluoroquinolones has provided an attractive option for treatment of tuberculosis (TB). However, the emergence of fluoroquinolone-resistant strains of <i>Mycobacterium tuberculosis</i> (<i>Mtb</i>) poses a threat for its sustainability. A scaffold hopping approach using the binding mode of novel bacterial topoisomerase inhibitors (NBTIs) led to the identification of a novel class of benzimidazoles as DNA gyrase inhibitors with potent anti-TB activity. Docking of benzimidazoles to a NBTI bound crystal structure suggested that this class of compound makes key contacts in the enzyme active site similar to the reported NBTIs. This observation was further confirmed through the measurement of DNA gyrase inhibition, and activity against <i>Mtb</i> strains harboring mutations that confer resistance to aminopiperidines based NBTIs and <i>Mtb</i> strains resistant to moxifloxacin. Structure–activity relationship modification at the C-7 position of the left-hand side ring provided further avenue to improve hERG selectivity for this chemical series that has been the major challenges for NBTIs

    Left-Hand Side Exploration of Novel Bacterial Topoisomerase Inhibitors to Improve Selectivity against hERG Binding

    No full text
    Structure–activity relationship (SAR) exploration on the left-hand side (LHS) of a novel class of bacterial topoisomerase inhibitors led to a significant improvement in the selectivity against hERG cardiac channel binding with concomitant potent antimycobacterial activity. Bulky polar substituents at the C-7 position of the naphthyridone ring did not disturb its positioning between two base pairs of DNA. Further optimization of the polar substituents on the LHS of the naphthyridone ring led to potent antimycobacterial activity (Mtb MIC = 0.06 μM) against <i>Mycobacterium tuberculosis</i> (Mtb). Additionally, this knowledge provided a robust SAR understanding to mitigate the hERG risk. This compound class inhibits Mtb DNA gyrase and retains its antimycobacterial activity against moxifloxacin-resistant strains of Mtb. Finally, we demonstrate <i>in vivo</i> proof of concept in an acute mouse model of TB following oral administration of compound <b>19</b>

    2‑Phenylindole and Arylsulphonamide: Novel Scaffolds Bactericidal against <i>Mycobacterium tuberculosis</i>

    No full text
    A cellular activity-based screen on <i>Mycobacterium tuberculosis</i> (Mtb) H37Rv using a focused library from the AstraZeneca corporate collection led to the identification of 2-phenylindoles and arylsulphonamides, novel antimycobacterial scaffolds. Both the series were bactericidal <i>in vitro</i> and in an intracellular macrophage infection model, active against drug sensitive and drug resistant Mtb clinical isolates, and specific to mycobacteria. The scaffolds showed promising structure–activity relationships; compounds with submicromolar cellular potency were identified during the hit to lead exploration. Furthermore, compounds from both scaffolds were tested for inhibition of known target enzymes or pathways of antimycobacterial drugs including InhA, RNA polymerase, DprE1, topoisomerases, protein synthesis, and oxidative-phosphorylation. Compounds did not inhibit any of the targets suggesting the potential of a possible novel mode of action(s). Hence, both scaffolds provide the opportunity to be developed further as leads and tool compounds to uncover novel mechanisms for tuberculosis drug discovery

    Methyl-Thiazoles: A Novel Mode of Inhibition with the Potential to Develop Novel Inhibitors Targeting InhA in Mycobacterium tuberculosis

    No full text
    InhA is a well validated Mycobacterium tuberculosis (Mtb) target as evidenced by the clinical success of isoniazid. Translating enzyme inhibition to bacterial cidality by targeting the fatty acid substrate site of InhA remains a daunting challenge. The recent disclosure of a methyl-thiazole series demonstrates that bacterial cidality can be achieved with potent enzyme inhibition and appropriate physicochemical properties. In this study, we report the molecular mode of action of a lead methyl-thiazole, along with analogues with improved CYP inhibition profile. We have identified a novel mechanism of InhA inhibition characterized by a hitherto unreported “Y158-out” inhibitor-bound conformation of the protein that accommodates a neutrally charged “warhead”. An additional novel hydrophilic interaction with protein residue M98 allows the incorporation of favorable physicochemical properties for cellular activity. Notably, the methyl-thiazole prefers the NADH-bound form of the enzyme with a <i>K</i><sub>d</sub> of ∼13.7 nM, as against the NAD<sup>+</sup>-bound form of the enzyme

    Novel N‑Linked Aminopiperidine-Based Gyrase Inhibitors with Improved hERG and in Vivo Efficacy against Mycobacterium tuberculosis

    No full text
    DNA gyrase is a clinically validated target for developing drugs against Mycobacterium tuberculosis (Mtb). Despite the promise of fluoroquinolones (FQs) as anti-tuberculosis drugs, the prevalence of pre-existing resistance to FQs is likely to restrict their clinical value. We describe a novel class of N-linked aminopiperidinyl alkyl quinolones and naphthyridones that kills Mtb by inhibiting the DNA gyrase activity. The mechanism of inhibition of DNA gyrase was distinct from the fluoroquinolones, as shown by their ability to inhibit the growth of fluoroquinolone-resistant Mtb. Biochemical studies demonstrated this class to exert its action via single-strand cleavage rather than double-strand cleavage, as seen with fluoroquinolones. The compounds are highly bactericidal against extracellular as well as intracellular Mtb. Lead optimization resulted in the identification of potent compounds with improved oral bioavailability and reduced cardiac ion channel liability. Compounds from this series are efficacious in various murine models of tuberculosis
    corecore