87 research outputs found

    Mitochondria-Targeted Antioxidants SkQ1 and MitoTEMPO Failed to Exert a Long-Term Beneficial Effect in Murine Polymicrobial Sepsis

    Get PDF
    Mitochondrial-derived reactive oxygen species have been deemed an important contributor in sepsis pathogenesis. We investigated whether two mitochondria-targeted antioxidants (mtAOX; SkQ1 and MitoTEMPO) improved long-term outcome, lessened inflammation, and improved organ homeostasis in polymicrobial murine sepsis. 3-month-old female CD-1 mice (n = 90) underwent cecal ligation and puncture (CLP) and received SkQ1 (5 nmol/kg), MitoTEMPO (50 nmol/kg), or vehicle 5 times post-CLP. Separately, 52 SkQ1-treated CLP mice were sacrificed at 24 h and 48 h for additional endpoints. Neither MitoTEMPO nor SkQ1 exerted any protracted survival benefit. Conversely, SkQ1 exacerbated 28-day mortality by 29%. CLP induced release of 10 circulating cytokines, increased urea, ALT, and LDH, and decreased glucose but irrespectively of treatment. Similar occurred for CLP-induced lymphopenia/neutrophilia and the NO blood release. At 48 h post-CLP, dying mice had approximately 100-fold more CFUs in the spleen than survivors, but this was not SkQ1 related. At 48 h, macrophage and granulocyte counts increased in the peritoneal lavage but irrespectively of SkQ1. Similarly, hepatic mitophagy was not altered by SkQ1 at 24 h. The absence of survival benefit of mtAOX may be due to the extended treatment and/or a relatively moderate-risk-of-death CLP cohort. Long-term effect of mtAOX in abdominal sepsis appears different to sepsis/inflammation models arising from other body compartments

    Mitochondria-Targeted Antioxidants SkQ1 and MitoTEMPO Failed to Exert a Long-Term Beneficial Effect in Murine Polymicrobial Sepsis

    Get PDF
    Mitochondrial-derived reactive oxygen species have been deemed an important contributor in sepsis pathogenesis. We investigated whether two mitochondria-targeted antioxidants (mtAOX; SkQ1 and MitoTEMPO) improved long-term outcome, lessened inflammation, and improved organ homeostasis in polymicrobial murine sepsis. 3-month-old female CD-1 mice (n=90) underwent cecal ligation and puncture (CLP) and received SkQ1 (5 nmol/kg), MitoTEMPO (50 nmol/kg), or vehicle 5 times post-CLP. Separately, 52 SkQ1-treated CLP mice were sacrificed at 24 h and 48 h for additional endpoints. Neither MitoTEMPO nor SkQ1 exerted any protracted survival benefit. Conversely, SkQ1 exacerbated 28-day mortality by 29%. CLP induced release of 10 circulating cytokines, increased urea, ALT, and LDH, and decreased glucose but irrespectively of treatment. Similar occurred for CLP-induced lymphopenia/neutrophilia and the NO blood release. At 48 h post-CLP, dying mice had approximately 100-fold more CFUs in the spleen than survivors, but this was not SkQ1 related. At 48 h, macrophage and granulocyte counts increased in the peritoneal lavage but irrespectively of SkQ1. Similarly, hepatic mitophagy was not altered by SkQ1 at 24 h. The absence of survival benefit of mtAOX may be due to the extended treatment and/or a relatively moderate-risk-of-death CLP cohort. Long-term effect of mtAOX in abdominal sepsis appears different to sepsis/inflammation models arising from other body compartments

    Flexible, polymer-supported synthesis of sphingosine derivatives provides ceramides with enhanced biological activity

    No full text
    A polymer-supported route for the synthesis of sphingosine derivatives is presented based on the C-acylation of polymeric phosphoranylidene acetates with an Fmoc-protected amino acid. The approach enables the flexible variation of the sphingosine tail through a deprotection-decarboxylation sequence followed by E-selective Wittig olefination cleavage. d-Erythro-sphingosine analogs have been synthesized by diastereoselective reduction of the keto group employing LiAlH(O-tBu)3 as reducing agent. The effect of ceramides and keto-ceramides on the proliferation of three cancer cell lines HEP G-2, PC-12 and HL-60 was investigated and a ceramide containing an aromatic sphingosine tail was identified as being most active

    Splenectomy modulates early immuno-inflammatory responses to trauma-hemorrhage and protects mice against secondary sepsis

    No full text
    In polytrauma patients, the impact of splenectomy is equivocal, ranging from negative to protective. We investigated the impact of splenectomy on immune responses in the 1st-hit polytrauma alone and on survival in the post-traumatic sepsis (2nd hit). Female BALB/c mice underwent polytrauma (1st hit) consisting of either a) TH: femur fracture, hemorrhagic shock or b) TSH: splenectomy, femur fracture, hemorrhagic shock. Additionally, the polytrauma hit was followed by cecal ligation and puncture (CLP) 48 h later and compared to CLP alone. Splenectomy improved the 28-day survival in secondary sepsis to 92% (from 62%), while TH lowered it to 46% (p < 0.05). The improved survival was concurrent with lower release of inflammatory cytokines (IL-6, CXCL-1, MCP-1) and increase of C5a post-CLP. In the polytrauma hit alone, TSH induced stronger neutrophilia (1.9 fold) and lymphocytosis (1.7 fold) when compared to TH mice. Moreover, TSH resulted in a 41% rise of regulatory T-cells and reduced the median fluorescence intensity of MHC-2 on monocytes by 55% within 48 h (p < 0.05). Conversely, leukocyte phagocytic capacity was significantly increased by 4-fold after TSH despite a similar M1/M2 macrophage profile in both groups. Summarizing, splenectomy provoked both immuno-suppressive and immuno-stimulatory responses but was life-saving in secondary sepsis. Additionally, the polytrauma components in 2-hit models should be tested for their effects on outcome; the presumed end-effect of the 1st hit solely based on the common immuno-inflammatory parameters could be misleading
    corecore