1,914 research outputs found
Recommended from our members
Electronics for Calorimeters at LHC
Some principal design features of front-end electronics for calorimeters in experiments at the LHC will be highlighted. Some concerns arising in the transition from the research and development and design phase to the construction will be discussed. Future challenges will be indicated. (4 refs)
Towards Precision LSST Weak-Lensing Measurement - I: Impacts of Atmospheric Turbulence and Optical Aberration
The weak-lensing science of the LSST project drives the need to carefully
model and separate the instrumental artifacts from the intrinsic lensing
signal. The dominant source of the systematics for all ground based telescopes
is the spatial correlation of the PSF modulated by both atmospheric turbulence
and optical aberrations. In this paper, we present a full FOV simulation of the
LSST images by modeling both the atmosphere and the telescope optics with the
most current data for the telescope specifications and the environment. To
simulate the effects of atmospheric turbulence, we generated six-layer phase
screens with the parameters estimated from the on-site measurements. For the
optics, we combined the ray-tracing tool ZEMAX and our simulated focal plane
data to introduce realistic aberrations and focal plane height fluctuations.
Although this expected flatness deviation for LSST is small compared with that
of other existing cameras, the fast f-ratio of the LSST optics makes this focal
plane flatness variation and the resulting PSF discontinuities across the CCD
boundaries significant challenges in our removal of the systematics. We resolve
this complication by performing PCA CCD-by-CCD, and interpolating the basis
functions using conventional polynomials. We demonstrate that this PSF
correction scheme reduces the residual PSF ellipticity correlation below 10^-7
over the cosmologically interesting scale. From a null test using HST/UDF
galaxy images without input shear, we verify that the amplitude of the galaxy
ellipticity correlation function, after the PSF correction, is consistent with
the shot noise set by the finite number of objects. Therefore, we conclude that
the current optical design and specification for the accuracy in the focal
plane assembly are sufficient to enable the control of the PSF systematics
required for weak-lensing science with the LSST.Comment: Accepted to PASP. High-resolution version is available at
http://dls.physics.ucdavis.edu/~mkjee/LSST_weak_lensing_simulation.pd
Recommended from our members
Optically Based Charge Injection System for Ionization Detectors
An optically coupled charge injection system for ionization based radiation detectors which allows a test charge to be injected without the creation of ground loops has been developed. An ionization like signal from an external source is brought into the detector through an optical fiber and injected into the electrodes by means of a photodiode. As an application example, crosstalk measurements on a liquid Argon electromagnetic calorimeter readout electrodes were performed
Developments of a 2D Position Sensitive Neutron Detector
Chinese Spallation Neutron Source (CSNS), one project of the 12th
five-year-plan scheme of China, is under construction in Guangdong province.
Three neutron spectrometers will be installed at the first phase of the
project, where two-dimensional position sensitive thermal neutron detectors are
required. Before the construction of the neutron detector, a prototype of
two-dimensional 200 mmx200 mm Multi-wire Proportional Chamber (MWPC) with the
flowing gas of Ar/CO2 (90/10) has been constructed and tested with the 55Fe
X-Ray using part of the electronics in 2009, which showed a good performance.
Following the test in 2009, the neutron detector has been constructed with the
complete electronics and filled with the 6atm.3He + 2.5atm.C3H8 gas mixture in
2010. The neutron detector has been primarily tested with an Am/Be source. In
this paper, some new developments of the neutron detector including the design
of the high pressure chamber, the optimization of the gas purifying system and
the gas filling process will be reported. The results and discussion are also
presented in this paper.Comment: 5 page
Characterization of the coherent noise, electromagnetic compatibility and electromagnetic interference of the ATLAS EM calorimeter Front End Board
Large-Mass Ultra-Low Noise Germanium Detectors: Performance and Applications in Neutrino and Astroparticle Physics
A new type of radiation detector, a p-type modified electrode germanium
diode, is presented. The prototype displays, for the first time, a combination
of features (mass, energy threshold and background expectation) required for a
measurement of coherent neutrino-nucleus scattering in a nuclear reactor
experiment. The device hybridizes the mass and energy resolution of a
conventional HPGe coaxial gamma spectrometer with the low electronic noise and
threshold of a small x-ray semiconductor detector, also displaying an intrinsic
ability to distinguish multiple from single-site particle interactions. The
present performance of the prototype and possible further improvements are
discussed, as well as other applications for this new type of device in
neutrino and astroparticle physics (double-beta decay, neutrino magnetic moment
and WIMP searches).Comment: submitted to Phys. Rev.
A phenomenological description of quantum-gravity-induced space-time noise
I propose a phenomenological description of space-time foam and discuss the
experimental limits that are within reach of forthcoming experiments.Comment: 10 pages, LaTex, 1 figure. Short paper, omitting most technical
details. More detailed analysis was reported in gr-qc/010400
Construction and Expected Performance of the Hadron Blind Detector for the PHENIX Experiment at RHIC
A new Hadron Blind Detector (HBD) for electron identification in high density
hadron environment has been installed in the PHENIX detector at RHIC in the
fall of 2006. The HBD will identify low momentum electron-positron pairs to
reduce the combinatorial background in the mass spectrum, mainly
in the low-mass region below 1 GeV/c. The HBD is a windowless
proximity-focusing Cherenkov detector with a radiator length of 50 cm, a CsI
photocathode and three layers of Gas Electron Multipliers (GEM). The HBD uses
pure CF as a radiator and a detector gas. Construction details and the
expected performance of the detector are described.Comment: QM2006 proceedings, 4 pages 3 figure
- …
