1,330 research outputs found

    What's nonviolence to do with the European Union?

    Get PDF
    This is the author accepted manuscript. The final version is available from UACES via the link in this record.Nonviolence has an established tradition in several disciplines, including political theory, international relations and political science. We explore the potential of nonviolence as analytical and normative framework for the study of European integration and European Union (EU) politics. At the outset, we introduce the basics of nonviolence and define our approach to this concept. We then apply it to three critical issues concerning the nature of EU power, the democratic deficit and the narrative of integration. We find that our framework re-defines the core dimensions of the problems of power and democracy, assists in imagining the EU in non state-morphic ways, and provides innovative ways to put praxis at the roots of the integration process and its narrative

    Unity in fragility: Nonviolence and COVID-19

    Get PDF
    The COVID-19 pandemic witnessed extreme forms of biopolitics, as well as the urgency to reconsider our relationship with the planet. Although biopolitics draws attention to the technologies of domination by public authorities, we cast the concepts of bios and politics in the wider framework of nonviolence. In this framework, bios is the set of practices (praxis) of ordinary citizens. And politics is power created by harm reduction, or actions in daily life that testimony the desire not to harm others or the planet. We leverage nonviolence at three levels, scaling up from the individual to social behaviour and to the planet. The first level concerns nonviolence as self-sufferance and as praxis to claim back the sovereignty of the body. In the second level, nonviolence is collective mobilization - building social capital, self-governance, and solidarity. The third level provides the vision of a diverse ecological citizenship with a sustainable relationship between human beings and the planet

    Polarization memory in the nonpolar magnetic ground state of multiferroic CuFeO2

    Full text link
    We investigate polarization memory effects in single-crystal CuFeO2, which has a magnetically-induced ferroelectric phase at low temperatures and applied B fields between 7.5 and 13 T. Following electrical poling of the ferroelectric phase, we find that the nonpolar collinear antiferromagnetic ground state at B = 0 T retains a strong memory of the polarization magnitude and direction, such that upon re-entering the ferroelectric phase a net polarization of comparable magnitude to the initial polarization is recovered in the absence of external bias. This memory effect is very robust: in pulsed-magnetic-field measurements, several pulses into the ferroelectric phase with reverse bias are required to switch the polarization direction, with significant switching only seen after the system is driven out of the ferroelectric phase and ground state either magnetically (by application of B > 13 T) or thermally. The memory effect is also largely insensitive to the magnetoelastic domain composition, since no change in the memory effect is observed for a sample driven into a single-domain state by application of stress in the [1-10] direction. On the basis of Monte Carlo simulations of the ground state spin configurations, we propose that the memory effect is due to the existence of helical domain walls within the nonpolar collinear antiferromagnetic ground state, which would retain the helicity of the polar phase for certain magnetothermal histories.Comment: 9 pages, 7 figure

    First-principles study of multiferroic RbFe(MoO4_4)2_2

    Full text link
    We have investigated the magnetic structure and ferroelectricity in RbFe(MoO4_4)2_2 via first-principles calculations. Phenomenological analyses have shown that ferroelectricity may arise due to both the triangular chirality of the magnetic structure, and through coupling between the magnetic helicity and the ferroaxial structural distortion. Indeed, it was recently proposed that the structural distortion plays a key role in stabilising the chiral magnetic structure itself. We have determined the relative contribution of the two mechanisms via \emph{ab-initio} calculations. Whilst the structural axiality does induce the magnetic helix by modulating the symmetric exchange interactions, the electric polarization is largely due to the in-plane spin triangular chirality, with both electronic and ionic contributions being of relativistic origin. At the microscopic level, we interpret the polarization as a secondary steric consequence of the inverse Dzyaloshinskii-Moriya mechanism and accordingly explain why the ferroaxial component of the electric polarization must be small

    Evolution of magneto-orbital order upon B-site electron doping in Na1-xCaxMn7O12 quadruple perovskite manganites

    Full text link
    We present the discovery and refinement by neutron powder diffraction of a new magnetic phase in the Na1-xCaxMn7O12 quadruple perovskite phase diagram, which is the incommensurate analogue of the well-known pseudo-CE phase of the simple perovskite manganites. We demonstrate that incommensurate magnetic order arises in quadruple perovskites due to the exchange interactions between A and B sites. Furthermore, by constructing a simple mean field Heisenberg exchange model that generically describes both simple and quadruple perovskite systems, we show that this new magnetic phase unifies a picture of the interplay between charge, magnetic and orbital ordering across a wide range of compounds.Comment: Accepted for publication in Physical Review Letter

    Effect of Sr substitution on superconductivity in Hg2(Ba1-ySry)2YCu2O8-d (part2): bond valence sum approach of the hole distribution

    Full text link
    The effects of Sr substitution on superconductivity, and more particulary the changes induced in the hole doping mechanism, were investigated in Hg2(Ba1-ySry)2YCu2O8-d by a "bond valence sum" analysis with Sr content from y = 0.0 to y = 1.0. A comparison with CuBa2YCu2O7-d and Cu2Ba2YCu2O8 systems suggests a possible explanation of the Tc enhancement from 0 K for y = 0.0 to 42 K for y = 1.0. The charge distribution among atoms of the unit cell was determined from the refined structure, for y = 0.0 to 1.0. It shows a charge transfer to the superconducting CuO2 plane via two doping channels pi(1) and pi(2), i.e. through O2(apical)-Cu and Ba/Sr-O1 bonds respectively.Comment: 13 pages, 5 figures, accepted for publication in Journal of Physics: Condensed Matte

    Electrical switching of magnetic polarity in a multiferroic BiFeO3 device at room temperature

    Full text link
    We have directly imaged reversible electrical switching of the cycloidal rotation direction (magnetic polarity) in a (111)-BiFeO3 epitaxial-film device at room temperature by non-resonant x-ray magnetic scattering. Consistent with previous reports, fully relaxed (111)-BiFeO3 epitaxial films consisting of a single ferroelectric domain were found to comprise a sub-micron-scale mosaic of magneto-elastic domains, all sharing a common direction of the magnetic polarity, which was found to switch reversibly upon reversal of the ferroelectric polarization without any measurable change of the magneto-elastic domain population. A real-space polarimetry map of our device clearly distinguished between regions of the sample electrically addressed into the two magnetic states with a resolution of a few tens of micron. Contrary to the general belief that the magneto-electric coupling in BiFeO3 is weak, we find that electrical switching has a dramatic effect on the magnetic structure, with the magnetic moments rotating on average by 90 degrees at every cycle.Comment: 6 pages, 5 figures; corrected figure

    Universal magneto-orbital ordering in the divalent AA-site quadruple perovskite manganites AAMn7_7O12_{12} (AA = Ca, Sr, Cd, and Pb)

    Full text link
    Through analysis of variable temperature neutron powder diffraction data, we present solutions for the magnetic structures of SrMn7_7O12_{12}, CdMn7_7O12_{12}, and PbMn7_7O12_{12} in all long-range ordered phases. The three compounds were found to have magnetic structures analogous to that reported for CaMn7_7O12_{12}. They all feature a higher temperature lock-in phase with \emph{commensurate} magneto-orbital coupling, and a delocked, multi-\textbf{k} magnetic ground state where \emph{incommensurate} magneto-orbital coupling gives rise to a constant-moment magnetic helix with modulated spin helicity. CdMn7_7O12_{12} represents a special case in which the orbital modulation is commensurate with the crystal lattice and involves stacking of fully and partially polarized orbital states. Our results provide a robust confirmation of the phenomenological model for magneto-orbital coupling previously presented for CaMn7_7O12_{12}. Furthermore, we show that the model is universal to the A2+A^{2+} quadruple perovskite manganites synthesised to date, and that it is tunable by selection of the AA-site ionic radius

    Cooling rate dependence of the antiferromagnetic domain structure of a single crystalline charge ordered manganite

    Full text link
    The low temperature phase of single crystals of Nd0.5_{0.5}Ca0.5_{0.5}MnO3_3 and Gd0.5_{0.5}Ca0.5_{0.5}MnO3_3 manganites is investigated by squid magnetometry. Nd0.5_{0.5}Ca0.5_{0.5}MnO3_3 undergoes a charge-ordering transition at TCOT_{CO}=245K, and a long range CE-type antiferromagnetic state is established at TNT_N=145K. The dc-magnetization shows a cooling rate dependence below TNT_N, associated with a weak spontaneous moment. The associated excess magnetization is related to uncompensated spins in the CE-type antiferromagnetic structure, and to the presence in this state of fully orbital ordered regions separated by orbital domain walls. The observed cooling rate dependence is interpreted to be a consequence of the rearrangement of the orbital domain state induced by the large structural changes occurring upon cooling.Comment: REVTeX4; 7 pages, 4 figures. Revised 2001/12/0
    • …
    corecore