117 research outputs found

    The Transit Light Source Effect: False Spectral Features and Incorrect Densities for M-dwarf Transiting Planets

    Full text link
    Transmission spectra are differential measurements that utilize stellar illumination to probe transiting exoplanet atmospheres. Any spectral difference between the illuminating light source and the disk-integrated stellar spectrum due to starspots and faculae will be imprinted in the observed transmission spectrum. However, few constraints exist for the extent of photospheric heterogeneities in M dwarfs. Here, we model spot and faculae covering fractions consistent with observed photometric variabilities for M dwarfs and the associated 0.3-5.5 μ\mum stellar contamination spectra. We find that large ranges of spot and faculae covering fractions are consistent with observations and corrections assuming a linear relation between variability amplitude and covering fractions generally underestimate the stellar contamination. Using realistic estimates for spot and faculae covering fractions, we find stellar contamination can be more than 10×10 \times larger than transit depth changes expected for atmospheric features in rocky exoplanets. We also find that stellar spectral contamination can lead to systematic errors in radius and therefore the derived density of small planets. In the case of the TRAPPIST-1 system, we show that TRAPPIST-1's rotational variability is consistent with spot covering fractions fspot=87+18%f_{spot} = 8^{+18}_{-7}\% and faculae covering fractions ffac=5446+16%f_{fac} = 54^{+16}_{-46}\%. The associated stellar contamination signals alter transit depths of the TRAPPIST-1 planets at wavelengths of interest for planetary atmospheric species by roughly 1-15 ×\times the strength of planetary features, significantly complicating JWSTJWST follow-up observations of this system. Similarly, we find stellar contamination can lead to underestimates of bulk densities of the TRAPPIST-1 planets of Δ(ρ)=38+3%\Delta(\rho) = -3^{+3}_{-8} \%, thus leading to overestimates of their volatile contents.Comment: accepted for publication in Ap

    Towards robust corrections for stellar contamination in JWST exoplanet transmission spectra

    Full text link
    Transmission spectroscopy is still the preferred characterization technique for exoplanet atmospheres, although it presents unique challenges which translate into characterization bottlenecks when robust mitigation strategies are missing. Stellar contamination is one of such challenges that can overpower the planetary signal by up to an order of magnitude, and thus not accounting for stellar contamination can lead to significant biases in the derived atmospheric properties. Yet, accounting for stellar contamination may not be straightforward, as important discrepancies exist between state-of-the-art stellar models and measured spectra and between models themselves. Here we explore the extent to which stellar models can be used to reliably correct for stellar contamination and yield a planet's uncontaminated transmission spectrum. We find that (1) discrepancies between stellar models can dominate the noise budget of JWST transmission spectra of planets around stars with heterogeneous photospheres; (2) the true number of unique photospheric spectral components and their properties can only be accurately retrieved when the stellar models have a sufficient fidelity; and (3) under such optimistic circumstances the contribution of stellar contamination to the noise budget of a transmission spectrum is considerably below that of the photon noise for the standard transit observation setup. Therefore, we suggest (1) increased efforts towards development of model spectra of stars and their active regions in a data-driven manner; and (2) the development of empirical approaches for deriving spectra of photospheric components using the observatories with which the atmospheric explorations are carried out.Comment: 15 pages, 8 figures, 2 table

    Empirically Constraining the Spectra of a Stars Heterogeneities From Its Rotation Lightcurve

    Full text link
    Transmission spectroscopy is currently the most powerful technique to study a wide range of planetary atmospheres, leveraging the filtering of a stars light by a planets atmosphere rather than its own emission. However, both a planet and its star contribute to the information encoded in a transmission spectrum and a particular challenge relate to disentangling their contributions. As measurements improve, the lack of fidelity of stellar spectra models present a bottleneck for accurate disentanglement. Considering JWST and future high-precision spectroscopy missions, we investigate the ability to derive empirical constraints on the emission spectra of stellar surface heterogeneities (i.e., spots and faculae) using the same facility as used to acquire the transmission spectra intended to characterize a given atmosphere. Using TRAPPIST-1 as a test case, we demonstrate that it is possible to constrain the photospheric spectrum to 0.2% and the spectra of stellar heterogeneities to within 1-5%, which will be valuable benchmarks to inform the new generation of theoretical stellar models. Long baseline of observations (90% of the stellar rotation period) are necessary to ensure the photon-limited (i.e., instrument-limited) exploration of exoplanetary atmospheres via transmission spectroscopy.Comment: 10 pages, 3 figure

    The Near-Infrared Transmission Spectra of TRAPPIST-1 Planets b, c, d, e, f, and g and Stellar Contamination in Multi-Epoch Transit Spectra

    Full text link
    The seven approximately Earth-sized transiting planets in the \object{TRAPPIST-1} system provide a unique opportunity to explore habitable zone and non-habitable zone small planets within the same system. Its habitable zone exoplanets -- due to their favorable transit depths -- are also worlds for which atmospheric transmission spectroscopy is within reach with the Hubble Space Telescope (HST) and with the James Webb Space Telescope (JWST). We present here an independent reduction and analysis of two \textit{HST} Wide Field Camera 3 (WFC3) near-infrared transit spectroscopy datasets for six planets (b through g). Utilizing our physically-motivated detector charge trap correction and a custom cosmic ray correction routine, we confirm the general shape of the transmission spectra presented by \textbf{\citet{deWit2016, deWit2018}}. Our data reduction approach leads to a 25\% increase in the usable data and reduces the risk of confusing astrophysical brightness variations (e.g., flares) with instrumental systematics. No prominent absorption features are detected in any individual planet's transmission spectra; by contrast, the combined spectrum of the planets shows a suggestive decrease around 1.4\,\micron similar to an inverted water absorption feature. Including transit depths from \textit{K2}, the SPECULOOS-South Observatory, and \textit{Spitzer}, we find that the complete transmission spectrum is fully consistent with stellar contamination owing to the transit light source effect. These spectra demonstrate how stellar contamination can overwhelm planetary absorption features in low-resolution exoplanet transit spectra obtained by \textit{HST} and \textit{JWST} and also highlight the challenges in combining multi epoch observations for planets around rapidly rotating spotted stars.Comment: 41 pages, 20 figures. Accepted for publication on AJ on 8/28/2018. Comments and suggestions are welcom

    Can 1D radiative equilibrium models of faculae be used for calculating contamination of transmission spectra?

    Full text link
    The reliable characterization of planetary atmospheres with transmission spectroscopy requires realistic modeling of stellar magnetic features, since features that are attributable to an exoplanet atmosphere could instead stem from the host star's magnetic activity. Current retrieval algorithms for analysing transmission spectra rely on intensity contrasts of magnetic features from 1D radiative-convective models. However, magnetic features, especially faculae, are not fully captured by such simplified models. Here we investigate how well such 1D models can reproduce 3D facular contrasts, taking a G2V star as an example. We employ the well established radiative magnetohydrodynamic code MURaM to obtain three-dimensional simulations of the magneto-convection and photosphere harboring a local small-scale-dynamo. Simulations without additional vertical magnetic fields are taken to describe the quiet solar regions, while simulations with initially 100 G, 200 G and 300 G vertical magnetic fields are used to represent different magnetic activity levels. Subsequently, the spectra emergent from the MURaM cubes are calculated with the MPS-ATLAS radiative transfer code. We find that the wavelength dependence of facular contrast from 1D radiative-convective models cannot reproduce facular contrasts obtained from 3D modeling. This has far reaching consequences for exoplanet characterization using transmission spectroscopy, where accurate knowledge of the host star is essential for unbiased inferences of the planetary atmospheric properties.Comment: 7 pages, 2 figures, submitted to APJ

    ACCESS: A Visual to Near-infrared Spectrum of the Hot Jupiter WASP-43b with Evidence of H2O\rm H_2O, but no evidence of Na or K

    Full text link
    We present a new ground-based visual transmission spectrum of the hot Jupiter WASP-43b, obtained as part of the ACCESS Survey. The spectrum was derived from four transits observed between 2015 and 2018, with combined wavelength coverage between 5,300 \r{A}-9,000 \r{A} and an average photometric precision of 708 ppm in 230 \r{A} bins. We perform an atmospheric retrieval of our transmission spectrum combined with literature HST/WFC3 observations to search for the presence of clouds/hazes as well as Na, K, Hα\alpha, and H2O\rm H_2O planetary absorption and stellar spot contamination over a combined spectral range of 5,318 \r{A}-16,420 \r{A}. We do not detect a statistically significant presence of Na I or K I alkali lines, or Hα\alpha in the atmosphere of WASP-43b. We find that the observed transmission spectrum can be best explained by a combination of heterogeneities on the photosphere of the host star and a clear planetary atmosphere with H2O\rm H_2O. This model yields a log-evidence of 8.26±0.428.26\pm0.42 higher than a flat (featureless) spectrum. In particular, the observations marginally favor the presence of large, low-contrast spots over the four ACCESS transit epochs with an average covering fraction fhet=0.270.16+0.42f_\text{het} = 0.27^{+0.42}_{-0.16} and temperature contrast ΔT=132 K±132 K\Delta T = 132\text{ K} \pm 132\text{ K}. Within the planet's atmosphere, we recover a log H2O\rm H_2O volume mixing ratio of 2.781.47+1.38-2.78^{+1.38}_{-1.47}, which is consistent with previous H2O\rm H_2O abundance determinations for this planet.Comment: 27 pages, 18 figures, 7 tables. Accepted for publication in AJ. Updated affiliation
    corecore