51 research outputs found

    Our Dynamic Sun

    Get PDF
    No abstract availabl

    Sounding Out the Unknown Sun

    Get PDF
    No abstract availabl

    The Dynamic Nature of Our Sun

    Get PDF
    No abstract availabl

    The Sun: An Introduction

    Get PDF
    No abstract availabl

    Linearity Analysis and Efficiency Testing of The Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) Science Cameras for Flight

    Get PDF
    To unveil the complexity of the solar atmosphere, measurement of the magnetic field in the upper chromosphere and transition region is fundamentally important, as this is where the forces transition from plasma to magnetic field dominated. Measurements of the field are also needed to elucidate the energy transport from the lower atmospheric regions to the corona beyond. Such an advance in heliospheric knowledge became possible with the first flight of the international solar sounding rocket mission, CLASP. For the first time, linear polarization was measured in Hydrogen Lyman-Alpha at 121.60 nm in September 2015. For linear polarization measurements in this emission line, high sensitivity is required due to the relatively weak polarization signal compared to the intensity. To achieve this high sensitivity, a low-noise sensor is required with good knowledge of its characterization, including linearity. This work presents further refinement of the linearity characterization of the cameras flown in 2015. We compared the current from a photodiode in the light path to the digital response of the detectors. Pre-flight CCD linearity measurements were taken for all three flight cameras and calculations of the linear fits and residuals were performed. However, the previous calculations included a smearing pattern and a digital saturation region on the detectors which were not properly taken into account. The calculations have been adjusted and were repeated for manually chosen sub-regions on the detectors that were found not to be affected. We present a brief overview of the instrument, the calibration data and procedures, and a comparison of the old and new linearity results. The CLASP cameras will be reused for the successor mission, CLASP2, which will measure the Magnesium II h & k emission lines between 279.45 nm and 280.35 nm. The new approach will help to better prepare for and to improve the camera characterization for CLASP2

    Magnetic nulls and super-radial expansion in the solar corona

    Get PDF
    Magnetic fields in the sun's outer atmosphere -- the corona -- control both solar-wind acceleration and the dynamics of solar eruptions. We present the first clear observational evidence of coronal magnetic nulls in off-limb linearly polarized observations of pseudostreamers, taken by the Coronal Multichannel Polarimeter (CoMP) telescope. These nulls represent regions where magnetic reconnection is likely to act as a catalyst for solar activity. CoMP linear-polarization observations also provide an independent, coronal proxy for magnetic expansion into the solar wind, a quantity often used to parameterize and predict the solar wind speed at Earth. We introduce a new method for explicitly calculating expansion factors from CoMP coronal linear-polarization observations, which does not require photospheric extrapolations. We conclude that linearly-polarized light is a powerful new diagnostic of critical coronal magnetic topologies and the expanding magnetic flux tubes that channel the solar wind

    Optical Alignment of the High-Precision UV Spectro-Polarimeter (CLASP2)

    Get PDF
    Chromospheric LAyer Spectro-Polarimeter (CLASP2) is our next sounding rocket experiment after the success of Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP1). CLASP2 is scheduled to launch in 2019, and aims to achieve high precision measurements of the linear and circular polarizations in the Mg II h & k lines near the 280 nm, whose line cores originate in the upper solar chromosphere. The CLASP2 spectro-polarimeter follows very successful design concept of the CLASP1 instrument with the minimal modification. A new grating was fabricated with the same radius of curvature as the CLASP1 grating, but with a different ruling density. This allows us to essentially reuse the CLASP1 mechanical structures and layout of the optics. However, because the observing wavelength of CLASP2 is twice longer than that of CLASP1, a magnifier optical system was newly added in front of the cameras to double the focal length of CLASP2 in order to maintain the same wavelength resolution as CLASP1 (0.01 nm). Meanwhile, a careful optical alignment of the specto-polarimeter is required to reach the 0.01 nm wavelength resolution. Therefore, we established an efficient alignment procedure for the CLASP2 spectro-polarimeter based on an experience of CLASP1. Here, we explain in detail the methods for achieving the optical alignment of the CLASP2 spectro-polarimeter and discuss our results by comparing with the performance requirements
    • …
    corecore