64 research outputs found
Brain Protection from Stroke with Intravenous TNFα Decoy Receptor-Trojan Horse Fusion Protein
Tumor necrosis factor (TNF)-α is produced in brain in response to acute cerebral ischemia, and promotes neuronal apoptosis. Biologic TNF inhibitors (TNFIs), such as the etanercept, cannot be developed as new stroke treatments because these large molecule drugs do not cross the blood–brain barrier (BBB). A BBB-penetrating biologic TNFI was engineered by fusion of the type II human TNF receptor (TNFR) to each heavy chain of a genetically engineered chimeric monoclonal antibody (MAb) against the mouse transferrin receptor (TfR), designated as cTfRMAb-TNFR fusion protein. The cTfRMAb domain of the fusion protein acts as a molecular Trojan horse to deliver the fused TNFR across the BBB. Etanercept or the cTfRMAb-TNFR fusion protein (1 mg/kg) was administered intravenously in adult mice subjected to 1-hour reversible middle cerebral artery occlusion up to 90 minutes after the occlusion. Neuroprotection was assessed at 24 hours or 7 days after occlusion. The cTfRMAb-TNFR fusion protein treatment caused a significant 45%, 48%, 42%, and 54% reduction in hemispheric, cortical, and subcortical stroke volumes, and neural deficit, respectively. Intravenous etanercept had no therapeutic effect. Biologic TNFIs can be reengineered for BBB penetration, and the IgG-TNFR fusion protein is therapeutic after delayed intravenous administration in experimental stroke
Plasma Pharmacokinetics of High-Affinity Transferrin Receptor Antibody-Erythropoietin Fusion Protein is a Function of Effector Attenuation in Mice
Erythropoietin (EPO) is a potential therapeutic for Alzheimer’s disease (AD); however, limited blood–brain barrier (BBB) penetration reduces its applicability as a CNS therapeutic. Antibodies against the BBB transferrin receptor (TfRMAbs) act as molecular Trojan horses for brain drug delivery, and a fusion protein of EPO and TfRMAb, designated TfRMAb-EPO, is protective in a mouse model of AD. TfRMAbs have Fc effector function side effects, and removal of the Fc N-linked glycosylation site by substituting Asn with Gly reduces the Fc effector function. However, the effect of such Fc mutations on the pharmacokinetics (PK) of plasma clearance of TfRMAb-based fusion proteins, such as TfRMAb-EPO, is unknown. To examine this, the plasma PK of TfRMAb-EPO (wild-type), which expresses the mouse IgG1 constant heavy chain region and includes the Asn residue at position 292, was compared to the mutant TfRMAb-N292G-EPO, in which the Asn residue at position 292 is mutated to Gly. Plasma PK was compared following IV, IP, and SQ administration for doses between 0.3 and 3 mg/kg in adult male C57 mice. The results show a profound increase in clearance (6- to 8-fold) of the TfRMAb-N292G-EPO compared with the wild-type TfRMAb-EPO following IV administration. The clearance of both the wild-type and mutant TfRMAb-EPO fusion proteins followed nonlinear PK, and a 10-fold increase in dose resulted in a 7- to 11-fold decrease in plasma clearance. Following IP and SQ administration, the Cmax values of the TfRMAb-N292G-EPO mutant were profoundly (37- to 114-fold) reduced compared with the wild-type TfRMAb-EPO, owing to comparable increases in plasma clearance of the mutant fusion protein. The wild-type TfRMAb fusion protein was associated with reticulocyte suppression, and the N292G mutation mitigated this suppression of reticulocytes. Overall, the beneficial suppression of effector function via the N292G mutation may be offset by the deleterious effect this mutation has on the plasma levels of the TfRMAb-EPO fusion protein, especially following SQ administration, which is the preferred route of administration in humans for chronic neurodegenerative diseases including AD
Pharmacokinetics and Brain Uptake in the Rhesus Monkey of a Fusion Protein of Arylsulfatase a and a Monoclonal Antibody Against the Human Insulin Receptor
Metachromatic leukodystrophy (MLD) is a lysosomal storage disorder of the brain caused by mutations in the gene encoding the lysosomal sulfatase, arylsulfatase A (ASA). It is not possible to treat the brain in MLD with recombinant ASA, because the enzyme does not cross the blood-brain barrier (BBB). In the present investigation, a BBB-penetrating IgG-ASA fusion protein is engineered and expressed, where the ASA monomer is fused to the carboxyl terminus of each heavy chain of an engineered monoclonal antibody (MAb) against the human insulin receptor (HIR). The HIRMAb crosses the BBB via receptor-mediated transport on the endogenous BBB insulin receptor, and acts as a molecular Trojan horse to ferry the ASA into brain from blood. The HIRMAb-ASA is expressed in stably transfected Chinese hamster ovary cells grown in serum free medium, and purified by protein A affinity chromatography. The fusion protein retains high affinity binding to the HIR, EC50 = 0.34 ± 0.11 nM, and retains high ASA enzyme activity, 20 ± 1 units/mg. The HIRMAb-ASA fusion protein is endocytosed and triaged to the lysosomal compartment in MLD fibroblasts. The fusion protein was radio-labeled with the Bolton–Hunter reagent, and the [125I]-HIRMAb-ASA rapidly penetrates the brain in the Rhesus monkey following intravenous administration. Film and emulsion autoradiography of primate brain shows global distribution of the fusion protein throughout the monkey brain. These studies describe a new biological entity that is designed to treat the brain of humans with MLD following non-invasive, intravenous infusion of an IgG-ASA fusion protein
Pharmacokinetics and Brain Uptake of an IgG-TNF Decoy Receptor Fusion Protein Following Intravenous, Intraperitoneal, and Subcutaneous Administration in Mice
Tumor necrosis factor (TNF)-α is a proinflammatory cytokine active in the brain. Etanercept, the TNF decoy receptor (TNFR), does not cross the blood–brain barrier (BBB). The TNFR was re-engineered for BBB penetration as a fusion protein with a chimeric monoclonal antibody (mAb) against the mouse transferrin receptor (TfR), and this fusion protein is designated cTfRMAb-TNFR. The cTfRMAb domain of the fusion protein acts as a molecular Trojan horse and mediates transport via the endogenous BBB TfR. To support future chronic treatment of mouse models of neural disease with daily administration of the cTfRMAb-TNFR fusion protein, a series of pharmacokinetics and brain uptake studies in the mouse was performed. The cTfRMAb-TNFR fusion protein was radiolabeled and injected into mice via the intravenous, intraperitoneal (IP), or subcutaneous (SQ) routes of administration at doses ranging from 0.35 to 10 mg/kg. The distribution of the fusion protein into plasma following the IP or SQ routes was enhanced by increasing the injection dose from 3 to 10 mg/kg. The fusion protein demonstrated long circulation times with high metabolic stability following the IP or SQ routes of injection. The IP or SQ routes produced concentrations of the cTfRMAb-TNFR fusion protein in the brain that exceed by 20- to 50-fold the concentration of TNFα in pathologic conditions of the brain. The SQ injection is the preferred route of administration, as the level of cTfRMAb fusion protein produced in the brain is comparable to that generated with intravenous injection, and at a much lower plasma area under the concentration curve of the fusion protein as compared to IP administration
Hematologic Safety of Chronic Brain-Penetrating Erythropoietin Dosing in APP/PS1 Mice
Introduction: Low blood-brain barrier (BBB) penetration and hematopoietic side effects limit the therapeutic development of erythropoietin (EPO) for Alzheimer\u27s disease (AD). A fusion protein of EPO and a chimeric monoclonal antibody targeting the mouse transferrin receptor (cTfRMAb) has been engineered. The latter drives EPO into the brain via receptor-mediated transcytosis across the BBB and increases its peripheral clearance to reduce hematopoietic side effects of EPO. Our previous work shows the protective effects of this BBB-penetrating EPO in AD mice but hematologic effects have not been studied. Herein, we investigate the hematologic safety and therapeutic effects of chronic cTfRMAb-EPO dosing, in comparison to recombinant human EPO (rhu-EPO), in AD mice.
Methods: Male APPswe PSEN1dE9 (APP/PS1) mice (9.5 months) were treated with saline (n = 11), and equimolar doses of cTfRMAb-EPO (3 mg/kg, n = 7), or rhu-EPO (0.6 mg/kg, n = 9) 2 days/week subcutaneously for 6 weeks, compared to saline-treated wild-type mice (n = 10). At 6 weeks, exploration and memory were assessed, and mice were sacrificed at 8 weeks. Spleens were weighed, and brains were evaluated for amyloid beta (Aβ) load and synaptophysin. Blood was collected at 4, 6 and 8 weeks for a complete blood count and white blood cells differential.
Results: cTfRMAb-EPO transiently increased reticulocyte counts after 4 weeks, followed by normalization of reticulocytes at 6 and 8 weeks. rhu-EPO transiently increased red blood cell count, hemoglobin and hematocrit, and significantly decreased mean corpuscular volume and reticulocytes at 4 weeks, which remained low at 6 weeks. At 8 weeks, a significant decline in red blood cell indices was observed with rhu-EPO treatment. Exploration and cognitive deficits were significantly worse in APP/PS1-rhu-EPO mice. Both cTfRMAb-EPO and rhu-EPO decreased 6E10-positive brain Aβ load; however, cTfRMAb-EPO and not rhu-EPO selectively reduced brain Aβ1-42 and elevated synaptophysin expression.
Discussion: Chronic treatment with cTfRMAb-EPO results in better hematologic safety, behavioral, and therapeutic indices compared with rhu-EPO, supporting the development of this BBB-penetrable EPO analog for AD. therapeutic indices compared with rhu-EPO, supporting the development of this BBB-penetrable EPO analog for AD
Brain Penetrating Bifunctional Erythropoietin-Transferrin Receptor Antibody Fusion Protein for Alzheimer\u27s Disease
Erythropoietin (EPO), a glycoprotein cytokine essential to hematopoiesis, has neuroprotective effects in rodent models of Alzheimer’s disease (AD). However, high therapeutic doses or invasive routes of administration of EPO are required to achieve effective brain concentrations due to low blood–brain barrier (BBB) penetrability, and high EPO doses result in hematopoietic side effects. These obstacles can be overcome by engineering a BBB-penetrable analog of EPO, which is rapidly cleared from the blood, by fusing EPO to a chimeric monoclonal antibody targeting the transferrin receptor (cTfRMAb), which acts as a molecular Trojan horse to ferry the EPO into the brain via the transvascular route. In the current study, we investigated the effects of the BBB-penetrable analog of EPO on AD pathology in a double transgenic mouse model of AD. Five and a half month old male APPswe/PSEN1dE9 (APP/PS1) transgenic mice were treated with saline (n = 10) or the BBB-penetrable EPO (n = 10) 3 days/week intraperitoneally for 8 weeks, compared to same-aged C57BL/6J wild-type mice treated with saline (n = 8) with identical regiment. At 9 weeks following treatment initiation, exploration and spatial memory were assessed with the open-field and Y-maze test, mice were sacrificed, and brains were evaluated for Aβ peptide load, synaptic loss, BBB disruption, microglial activation, and microhemorrhages. APP/PS1 mice treated with the BBB-penetrable cTfRMAb-EPO fusion protein had significantly lower cortical and hippocampal Aβ peptide number (p \u3c 0.05) and immune-positive area (p \u3c 0.05), a decrease in hippocampal synaptic loss (p \u3c 0.05) and cortical microglial activation (p \u3c 0.001), and improved spatial memory (p \u3c 0.05) compared with APP/PS1 saline controls. BBB-penetrating EPO was not associated with microhemorrhage development. The cTfRMAb-EPO fusion protein offers therapeutic benefits by targeting multiple targets of AD pathogenesis and progression (Aβ load, synaptic loss, microglial activation) and improving spatial memory in the APP/PS1 mouse model of AD
Recommended from our members
A US perspective on closing the carbon cycle to defossilize difficult-to-electrify segments of our economy
Electrification to reduce or eliminate greenhouse gas emissions is essential to mitigate climate change. However, a substantial portion of our manufacturing and transportation infrastructure will be difficult to electrify and/or will continue to use carbon as a key component, including areas in aviation, heavy-duty and marine transportation, and the chemical industry. In this Roadmap, we explore how multidisciplinary approaches will enable us to close the carbon cycle and create a circular economy by defossilizing these difficult-to-electrify areas and those that will continue to need carbon. We discuss two approaches for this: developing carbon alternatives and improving our ability to reuse carbon, enabled by separations. Furthermore, we posit that co-design and use-driven fundamental science are essential to reach aggressive greenhouse gas reduction targets
Sequencing and de novo assembly of 150 genomes from Denmark as a population reference
Hundreds of thousands of human genomes are now being sequenced to characterize genetic variation and use this information to augment association mapping studies of complex disorders and other phenotypic traits. Genetic variation is identified mainly by mapping short reads to the reference genome or by performing local assembly. However, these approaches are biased against discovery of structural variants and variation in the more complex parts of the genome. Hence, large-scale de novo assembly is needed. Here we show that it is possible to construct excellent de novo assemblies from high-coverage sequencing with mate-pair libraries extending up to 20 kilobases. We report de novo assemblies of 150 individuals (50 trios) from the GenomeDenmark project. The quality of these assemblies is similar to those obtained using the more expensive long-read technology. We use the assemblies to identify a rich set of structural variants including many novel insertions and demonstrate how this variant catalogue enables further deciphering of known association mapping signals. We leverage the assemblies to provide 100 completely resolved major histocompatibility complex haplotypes and to resolve major parts of the Y chromosome. Our study provides a regional reference genome that we expect will improve the power of future association mapping studies and hence pave the way for precision medicine initiatives, which now are being launched in many countries including Denmark
Trypsin encoding PRSS1-PRSS2 variation influence the risk of asparaginase-associated pancreatitis in children with acute lymphoblastic leukemia: a Ponte di Legno toxicity working group report
Asparaginase-associated pancreatitis is a life-threatening toxicity to childhood acute lymphoblastic leukemia treatment. To elucidate genetic predisposition and asparaginase-associated pancreatitis pathogenesis, ten trial groups contributed remission samples from patients aged 1.0−17.9 years treated for acute lymphoblastic leukemia between 2000 and 2016. Cases (n=244) were defined by the presence of at least two of the following criteria: (i) abdominal pain; (ii) levels of pancreatic enzymes ≥3 × upper normal limit; and (iii) imaging compatible with pancreatitis. Controls (n=1320) completed intended asparaginase therapy, with 78% receiving ≥8 injections of pegylated-asparaginase, without developing asparaginase-associated pancreatitis. rs62228256 on 20q13.2 showed the strongest association with the development of asparaginase-associated pancreatitis (odds ratio=3.75; P=5.2×10−8). Moreover, rs13228878 (OR=0.61; P=7.1×10−6) and rs10273639 (OR=0.62; P=1.1×10−5) on 7q34 showed significant association with the risk of asparaginase-associated pancreatitis. A Dana Farber Cancer Institute ALL Consortium cohort consisting of patients treated on protocols between 1987 and 2004 (controls=285, cases=33), and the Children’s Oncology Group AALL0232 cohort (controls=2653, cases=76) were available as replication cohorts for the 20q13.2 and 7q34 variants, respectively. While rs62228256 was not validated as a risk factor (P=0.77), both rs13228878 (P=0.03) and rs10273639 (P=0.04) were. rs13228878 and rs10273639 are in high linkage disequilibrium (r2=0.94) and associated with elevated expression of the PRSS1 gene, which encodes for trypsinogen, and are known risk variants for alcohol-associated and sporadic pancreatitis in adults. Intra-pancreatic trypsinogen cleavage to proteolytic trypsin induces autodigestion and pancreatitis. In conclusion, this study finds a shared genetic predisposition between asparaginase-associated pancreatitis and non-asparaginase-associated pancreatitis, and targeting the trypsinogen activation pathway may enable identification of effective interventions for asparaginase-associated pancreatitis
- …