2 research outputs found

    Synthetic polycations with controlled charge density and molecular weight as building blocks for biomaterials

    No full text
    <p>A series of polycations prepared by RAFT copolymerization of N-(3-aminopropyl)methacrylamide hydrochloride (APM) and N-(2-hydroxypropyl)methacrylamide, with molecular weights of 15 and 40 kDa, and APM content of 10–75 mol%, were tested as building blocks for electrostatically assembled hydrogels such as those used for cell encapsulation. Complexation and distribution of these copolymers within anionic calcium alginate gels, as well as cytotoxicity, cell attachment, and cell proliferation on surfaces grafted with the copolymers were found to depend on composition and molecular weight. Copolymers with lower cationic charge density and lower molecular weight showed less cytotoxicity and cell adhesion, and were more mobile within alginate gels. These findings aid in designing improved polyelectrolyte complexes for use as biomaterials.</p

    Charge-Shifting Polycations with Tunable Rates of Hydrolysis: Effect of Backbone Substituents on Poly[2-(dimethylamino)ethyl acrylates]

    No full text
    While polycations based on 2-(dimethylamino)­ethyl methacrylate and 2-(dimethylamino)­ethyl acrylate are used in applications ranging from biomaterials to wastewater treatment, few studies have considered the remarkable differences in the hydrolytic stabilities of the respective ester groups. Here, we describe how the nature of nonmethyl α-substituents affect the rates of ester hydrolysis of such polymers, with an emphasis on the resulting shift of net polymer charge from cationic toward anionic. We introduce 2-(dimethylamino)­ethyl 2-hydroxymethyl acrylate (DHMA) as a new, very hydrolytically labile, cationic monomer that can be used to form homopolymers as well as a means to tune copolymer hydrolysis. DHMA synthesis and free radical polymerization are described, including reactivity ratios for hydroxyl-protected derivatives of DHMA and 2-(dimethylamino)­ethyl acrylate (DMAEA). Hydrolyses of PDHMA, P­[DHMA-<i>co</i>-DMAEA], PDMAEA, and PDMAEMA in pH 5 and 7 buffer are reported. The presence of the hydroxymethyl α-substituent in PDHMA led to rates of hydrolysis 2–3 orders of magnitude faster than the already rapid hydrolysis of PDMAEA. Furthermore, hydrolysis rates of P­[DHMA-<i>co</i>-DMAEA] copolymers were shown to increase as the DHMA mole fraction increased. As a result, a new route to adjusting the charge-shifting rates of such polycations in aqueous media is described
    corecore