12 research outputs found

    Identification of Purines and 7‑Deazapurines as Potent and Selective Type I Inhibitors of Troponin I‑Interacting Kinase (TNNI3K)

    No full text
    A series of cardiac troponin I-interacting kinase (TNNI3K) inhibitors arising from 3-((9<i>H</i>-purin-6-yl)­amino)-<i>N</i>-methyl-benzenesulfonamide (<b>1</b>) is disclosed along with fundamental structure–function relationships that delineate the role of each element of <b>1</b> for TNNI3K recognition. An X-ray structure of <b>1</b> bound to TNNI3K confirmed its Type I binding mode and is used to rationalize the structure–activity relationship and employed to design potent, selective, and orally bioavailable TNNI3K inhibitors. Identification of the 7-deazapurine heterocycle as a superior template (vs purine) and its elaboration by introduction of C4-benzenesulfonamide and C7- and C8–7-deazapurine substituents produced compounds with substantial improvements in potency (>1000-fold), general kinase selectivity (10-fold improvement), and pharmacokinetic properties (>10-fold increase in poDNAUC). Optimal members of the series have properties suitable for use in <i>in vitro</i> and <i>in vivo</i> experiments aimed at elucidating the role of TNNI3K in cardiac biology and serve as leads for developing novel heart failure medicines

    Identification of Purines and 7‑Deazapurines as Potent and Selective Type I Inhibitors of Troponin I‑Interacting Kinase (TNNI3K)

    No full text
    A series of cardiac troponin I-interacting kinase (TNNI3K) inhibitors arising from 3-((9<i>H</i>-purin-6-yl)­amino)-<i>N</i>-methyl-benzenesulfonamide (<b>1</b>) is disclosed along with fundamental structure–function relationships that delineate the role of each element of <b>1</b> for TNNI3K recognition. An X-ray structure of <b>1</b> bound to TNNI3K confirmed its Type I binding mode and is used to rationalize the structure–activity relationship and employed to design potent, selective, and orally bioavailable TNNI3K inhibitors. Identification of the 7-deazapurine heterocycle as a superior template (vs purine) and its elaboration by introduction of C4-benzenesulfonamide and C7- and C8–7-deazapurine substituents produced compounds with substantial improvements in potency (>1000-fold), general kinase selectivity (10-fold improvement), and pharmacokinetic properties (>10-fold increase in poDNAUC). Optimal members of the series have properties suitable for use in <i>in vitro</i> and <i>in vivo</i> experiments aimed at elucidating the role of TNNI3K in cardiac biology and serve as leads for developing novel heart failure medicines

    The Identification and Pharmacological Characterization of 6-(tert-Butylsulfonyl)-N-(5-fluoro-1H-indazol-3-yl)quinolin-4-amine (GSK583), a Highly Potent and Selective Inhibitor of RIP2 Kinase

    No full text
    RIP2 kinase is a central component of the innate immune system and enables downstream signaling following activation of the pattern recognition receptors NOD1 and NOD2, leading to the production of inflammatory cytokines. Recently, several inhibitors of RIP2 kinase have been disclosed that have contributed to the fundamental understanding of the role of RIP2 in this pathway. However, because they lack either broad kinase selectivity or strong affinity for RIP2, these tools have only limited utility to assess the role of RIP2 in complex environments. We present, herein, the discovery and pharmacological characterization of GSK583, a next-generation RIP2 inhibitor possessing exquisite selectivity and potency. Having demonstrated the pharmacological precision of this tool compound, we report its use in elucidating the role of RIP2 kinase in a variety of in vitro, in vivo, and ex vivo experiments, further clarifying our understanding of the role of RIP2 in NOD1 and NOD2 mediated disease pathogenesis

    DNA-Encoded Library Screening Identifies Benzo[<i>b</i>][1,4]oxazepin-4-ones as Highly Potent and Monoselective Receptor Interacting Protein 1 Kinase Inhibitors

    No full text
    The recent discovery of the role of receptor interacting protein 1 (RIP1) kinase in tumor necrosis factor (TNF)-mediated inflammation has led to its emergence as a highly promising target for the treatment of multiple inflammatory diseases. We screened RIP1 against GSK’s DNA-encoded small-molecule libraries and identified a novel highly potent benzoxazepinone inhibitor series. We demonstrate that this template possesses complete monokinase selectivity for RIP1 plus unique species selectivity for primate versus nonprimate RIP1. We elucidate the conformation of RIP1 bound to this benzoxazepinone inhibitor driving its high kinase selectivity and design specific mutations in murine RIP1 to restore potency to levels similar to primate RIP1. This series differentiates itself from known RIP1 inhibitors in combining high potency and kinase selectivity with good pharmacokinetic profiles in rodents. The favorable developability profile of this benzoxazepinone template, as exemplified by compound <b>14</b> (GSK’481), makes it an excellent starting point for further optimization into a RIP1 clinical candidate

    DNA-Encoded Library Screening Identifies Benzo[<i>b</i>][1,4]oxazepin-4-ones as Highly Potent and Monoselective Receptor Interacting Protein 1 Kinase Inhibitors

    No full text
    The recent discovery of the role of receptor interacting protein 1 (RIP1) kinase in tumor necrosis factor (TNF)-mediated inflammation has led to its emergence as a highly promising target for the treatment of multiple inflammatory diseases. We screened RIP1 against GSK’s DNA-encoded small-molecule libraries and identified a novel highly potent benzoxazepinone inhibitor series. We demonstrate that this template possesses complete monokinase selectivity for RIP1 plus unique species selectivity for primate versus nonprimate RIP1. We elucidate the conformation of RIP1 bound to this benzoxazepinone inhibitor driving its high kinase selectivity and design specific mutations in murine RIP1 to restore potency to levels similar to primate RIP1. This series differentiates itself from known RIP1 inhibitors in combining high potency and kinase selectivity with good pharmacokinetic profiles in rodents. The favorable developability profile of this benzoxazepinone template, as exemplified by compound <b>14</b> (GSK’481), makes it an excellent starting point for further optimization into a RIP1 clinical candidate

    The Identification and Pharmacological Characterization of 6‑(<i>tert</i>-Butylsulfonyl)‑<i>N</i>‑(5-fluoro‑1<i>H</i>‑indazol-3-yl)quinolin-4-amine (GSK583), a Highly Potent and Selective Inhibitor of RIP2 Kinase

    No full text
    RIP2 kinase is a central component of the innate immune system and enables downstream signaling following activation of the pattern recognition receptors NOD1 and NOD2, leading to the production of inflammatory cytokines. Recently, several inhibitors of RIP2 kinase have been disclosed that have contributed to the fundamental understanding of the role of RIP2 in this pathway. However, because they lack either broad kinase selectivity or strong affinity for RIP2, these tools have only limited utility to assess the role of RIP2 in complex environments. We present, herein, the discovery and pharmacological characterization of GSK583, a next-generation RIP2 inhibitor possessing exquisite selectivity and potency. Having demonstrated the pharmacological precision of this tool compound, we report its use in elucidating the role of RIP2 kinase in a variety of in vitro, in vivo, and ex vivo experiments, further clarifying our understanding of the role of RIP2 in NOD1 and NOD2 mediated disease pathogenesis

    The Identification and Pharmacological Characterization of 6‑(<i>tert</i>-Butylsulfonyl)‑<i>N</i>‑(5-fluoro‑1<i>H</i>‑indazol-3-yl)quinolin-4-amine (GSK583), a Highly Potent and Selective Inhibitor of RIP2 Kinase

    No full text
    RIP2 kinase is a central component of the innate immune system and enables downstream signaling following activation of the pattern recognition receptors NOD1 and NOD2, leading to the production of inflammatory cytokines. Recently, several inhibitors of RIP2 kinase have been disclosed that have contributed to the fundamental understanding of the role of RIP2 in this pathway. However, because they lack either broad kinase selectivity or strong affinity for RIP2, these tools have only limited utility to assess the role of RIP2 in complex environments. We present, herein, the discovery and pharmacological characterization of GSK583, a next-generation RIP2 inhibitor possessing exquisite selectivity and potency. Having demonstrated the pharmacological precision of this tool compound, we report its use in elucidating the role of RIP2 kinase in a variety of in vitro, in vivo, and ex vivo experiments, further clarifying our understanding of the role of RIP2 in NOD1 and NOD2 mediated disease pathogenesis
    corecore