26 research outputs found

    The role of Toll-like receptor-4 in pertussis vaccine-induced immunity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The gram-negative bacterium <it>Bordetella pertussis </it>is an important causative agent of pertussis, an infectious disease of the respiratory tract. After introduction of whole-cell vaccines (wP) in the 1950's, pertussis incidence has decreased significantly. Because wP were found to be reactogenic, in most developed countries they have been replaced by acellular vaccines (aP). We have previously shown a role for Toll-like receptor 4 (Tlr4) in pertussis-infected mice and the pertussis toxin (Ptx)-IgG response in wP-vaccinated children, raising the issue of the relative importance of Tlr4 in wP vaccination of mice. Here we analyze the effects of wP and aP vaccination and <it>B. pertussis </it>challenge, in <it>Tlr4</it>-deficient C3H/HeJ and wild-type C3H/HeOuJ mice. aP consists of Ptx, filamentous hemagglutinin (FHA), and pertactin (Prn).</p> <p>Results</p> <p>We show an important role of Tlr4 in wP and (to a lesser extent) aP vaccination, induction of Th1 and Th17 cells by wP but not aP vaccination, and induction of Th17 cells by infection, confirming data by Higgins et al. (<it>J Immunol </it>2006, <b>177:</b>7980–9). Furthermore, in <it>Tlr4</it>-deficient mice, compared to wild-type controls (i) after vaccination only, Ptx-IgG (that was induced by aP but not wP vaccination), FHA-IgG, and Prn-IgG levels were similar, (ii) after infection (only), lung IL-1α and IL-1β expression were lower, (iii) after wP vaccination and challenge, Prn-IgG level and lung IL-5 expression were higher, while lung IL-1β, TNF-α, IFN-γ, IL-17, and IL-23 expression were lower, and lung pathology was absent, and (iv) after aP vaccination and challenge, Prn-IgG level and lung IL-5 expression were higher, while Ptx-IgG level was lower.</p> <p>Conclusion</p> <p>Tlr4 does not influence the humoral response to vaccination (without challenge), plays an important role in natural immunity, wP and aP efficacy, and induction of Th1 and Th17 responses, is critical for lung pathology and enhances pro-inflammatory cytokine production after wP vaccination and challenge, and diminishes Th2 responses after both wP and aP vaccination and challenge. wP vaccination does not induce Ptx-IgG. A role for LPS in the efficacy of wP underlines the usefulness of LPS analogs to improve bacterial subunit vaccines such as aP.</p

    Identification of an altered peptide ligand based on the endogenously presented, rheumatoid arthritis-associated, human cartilage glycoprotein-39(263–275) epitope: an MHC anchor variant peptide for immune modulation

    Get PDF
    We sought to identify an altered peptide ligand (APL) based on the endogenously expressed synovial auto-epitope of human cartilage glycoprotein-39 (HC gp-39) for modulation of cognate, HLA-DR4-restricted T cells. For this purpose we employed a panel of well-characterized T cell hybridomas generated from HC gp-39-immunized HLA-DR4 transgenic mice. The hybridomas all respond to the HC gp-39(263–275) epitope when bound to HLA-DR4(B1*0401) but differ in their fine specificities. First, the major histocompatibility complex (MHC) and T-cell receptor (TCR) contact residues were identified by analysis of single site substituted analogue peptides for HLA-DR4 binding and cognate T cell recognition using both T hybridomas and polyclonal T cells from peptide-immunized HLA-DR4 transgenic mice. Analysis of single site substituted APL by cognate T cells led to identification of Phe265 as the dominant MHC anchor. The amino acids Ala268, Ser269, Glu271 and Thr272 constituted the major TCR contact residues, as substitution at these positions did not affect HLA-DR4(B1*0401) binding but abrogated T cell responses. A structural model for visualisation of TCR recognition was derived. Second, a set of non-classical APLs, modified at the MHC key anchor position but with unaltered TCR contacts, was developed. When these APLs were analysed, a partial TCR agonist was identified and found to modulate the HC gp-39(263–275)-specific, pro-inflammatory response in HLA-DR4 transgenic mice. We identified a non-classical APL by modification of the p1 MHC anchor in a synovial auto-epitope. This APL may qualify for rheumatoid arthritis immunotherapy

    Differential Effect of TLR2 and TLR4 on the Immune Response after Immunization with a Vaccine against Neisseria meningitidis or Bordetella pertussis

    Get PDF
    Neisseria meningitidis and Bordetella pertussis are Gram-negative bacterial pathogens that can cause serious diseases in humans. N. meningitidis outer membrane vesicle (OMV) vaccines and whole cell pertussis vaccines have been successfully used in humans to control infections with these pathogens. The mechanisms behind their effectiveness are poorly defined. Here we investigated the role of Toll-like receptor (TLR) 2 and TLR4 in the induction of immune responses in mice after immunization with these vaccines. Innate and adaptive immune responses were compared between wild type mice and mice deficient in TLR2, TLR4, or TRIF. TRIF-deficient and TLR4-deficient mice showed impaired immunity after immunization. In contrast, immune responses were not lower in TLR2−/− mice but tended even to be higher after immunization. Together our data demonstrate that TLR4 activation contributes to the immunogenicity of the N. meningitidis OMV vaccine and the whole cell pertussis vaccine, but that TLR2 activation is not required

    TBVAC2020: Advancing tuberculosis vaccines from discovery to clinical development

    Get PDF
    TBVAC2020 is a research project supported by the Horizon 2020 program of the European Commission (EC). It aims at the discovery and development of novel tuberculosis (TB) vaccines from preclinical research projects to early clinical assessment. The project builds on previous collaborations from 1998 onwards funded through the EC framework programs FP5, FP6, and FP7. It has succeeded in attracting new partners from outstanding laboratories from all over the world, now totaling 40 institutions. Next to the development of novel vaccines, TB biomarker development is also considered an important asset to facilitate rational vaccine selection and development. In addition, TBVAC2020 offers portfolio management that provides selection criteria for entry, gating, and priority settings of novel vaccines at an early developmental stage. The TBVAC2020 consortium coordinated by TBVI facilitates collaboration and early data sharing between partners with the common aim of working toward the development of an effective TB vaccine. Close links with funders and other consortia with shared interests further contribute to this goal

    The role of Toll-like receptor-4 in pertussis vaccine-induced immunity-2

    No full text
    Uvant (C), twice before intranasal infection. Two hours before challenge, and three and seven days after challenge mice were weighed. Data are indicated as mean ± SEM (N = 6). Non-boxed -values: compared to the adjuvant control (same strain and day after challenge). Boxed -value: compared to the wild-type strain (same treatment and day after challenge). ANOVA followed by Bonferroni post-hoc test. A single representative experiment of 2 is shown.<p><b>Copyright information:</b></p><p>Taken from "The role of Toll-like receptor-4 in pertussis vaccine-induced immunity"</p><p>http://www.biomedcentral.com/1471-2172/9/21</p><p>BMC Immunology 2008;9():21-21.</p><p>Published online 22 May 2008</p><p>PMCID:PMC2409298.</p><p></p

    The role of Toll-like receptor-4 in pertussis vaccine-induced immunity-0

    No full text
    Injected with 1/5 human dose (HD) wP, aP, or adjuvant (C), twice before intranasal infection. Three and seven days after challenge lungs were excised, and the number of viable was determined in right lung lobes. Each symbol represents the number of bacteria in the lung of an individual mouse; horizontal lines represent the group average. Non-boxed -values: compared to the indicated treatment group (same strain and day after infection). Boxed -values: compared to the wild-type strain (same treatment and day after infection). ANOVA followed by Bonferroni post-hoc test. A single representative experiment of 2 is shown.<p><b>Copyright information:</b></p><p>Taken from "The role of Toll-like receptor-4 in pertussis vaccine-induced immunity"</p><p>http://www.biomedcentral.com/1471-2172/9/21</p><p>BMC Immunology 2008;9():21-21.</p><p>Published online 22 May 2008</p><p>PMCID:PMC2409298.</p><p></p
    corecore