2,389 research outputs found

    Feminists really do count : the complexity of feminist methodologies

    Get PDF
    We are delighted to be presenting this special issue on the topic of feminism and quantitative methods. We believe that such an issue is exceptionally timely. This is not simply because of ongoing debates around quantification within the field of feminism and women‟s studies. It is also because of debates within the wider research community about the development of appropriate methodologies that take account of new technological and philosophical concerns and are fit-for-purpose for researching contemporary social, philosophical, cultural and global issues. Two areas serve as exemplars in this respect and both speak to these combined wider social science and specifically feminist methodological concerns. The first is the increasing concern amongst social scientists with how the complexity of social life can be captured and analysed. Within feminism, this can be seen in debates about intersectionality that recognise the concerns arising from multiple social positions/divisions and associated power issues. As Denis (2008: 688) comments in respect of intersectional analysis „The challenge of integrating multiple, concurrent, yet often contradictory social locations into analyses of power relations has been issued. Theorising to accomplish this end is evolving, and we are struggling to develop effective methodological tools in order to marry theorising with necessary complex analyses of empirical data.‟ Secondly, new techniques and new data sources are now coming on line. This includes work in the UK of the ESRC National Data Strategy which has been setting out the priorities for the development of research data resources both within and across the boundaries of the social sciences. This will facilitate historical, longitudinal, interdisciplinary and mixed methodological research. And it may be the case that these developments facilitate the achievement of a longstanding feminist aim not simply for interdisciplinarity but for transdisciplinarity in epistemological and methodological terms

    Quantifying photosynthetic rates of microphytobenthos using the triple isotope composition of dissolved oxygen

    Get PDF
    Author Posting. © Association for the Sciences of Limnology and Oceanography, 2013. This article is posted here by permission of Association for the Sciences of Limnology and Oceanography for personal use, not for redistribution. The definitive version was published in Limnology and Oceanography: Methods 11 (2013): 360-373, doi:10.4319/lom.2013.11.360.Microphytobenthos are important mediators of nutrient and carbon fluxes in coastal environments. However, quantifying production rates by microphytobenthos is difficult, and existing methods necessitate perhaps erroneous assumptions that dark respiration equals light respiration. Here we present a new method for quantifying photosynthetic rates of microphytobenthos, i.e., gross primary production, by using the triple isotope composition of dissolved oxygen in benthic flux chambers. Because the triple oxygen isotope signature is sensitive to photosynthesis, but not to respiration, this method allows quantification of gross photosynthetic oxygen fluxes by microphytobenthos without assumptions about respiration. We present results from field experiments in Waquoit Bay, Massachusetts, that illustrate the method.We gratefully acknowledge funding for this work by the Coastal Ocean Institute of Woods Hole Oceanographic Institution and the National Science Foundation (OCE-82964400). EH was supported by a National Defense Science and Engineering Graduate Fellowship award

    Submesoscale hotspots of productivity and respiration : insights from high-resolution oxygen and fluorescence sections

    Get PDF
    Author Posting. © The Author(s), 2017. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part I: Oceanographic Research Papers 130 (2017): 1-11, doi:10.1016/j.dsr.2017.10.005.Modeling studies have shown that mesoscale and submesoscale processes can stimulate phytoplankton productivity and export production. Here, we present observations from an undulating, towed Video Plankton Recorder (VPR-II) in the tropical Atlantic. The VPR-II collected profiles of oxygen, fluorescence, temperature and salinity in the upper 140 m of the water column at a spatial resolution of 1 m in the vertical and <2 km in the horizontal. The data reveal remarkable "hotspots", i.e. locations 5 to 10 km wide which have elevated fluorescence and decreased oxygen, both of which are likely the result of intense submesoscale upwelling. Based on estimates of source water, estimated from identical temperature and salinity surfaces, hotspots are more often areas of net respiration than areas of net production — although the inferred changes in oxygen are subject to uncertainty in the determination of the source of the upwelled waters since the true source water may not have been sampled. We discuss the spatial distribution of these hotspots and present a conceptual model outlining their possible generation and decline. Simultaneous measurements of O2/Ar in the mixed layer from a shipboard mass spectrometer provide estimates of rates of surface net community production. We find that the subsurface biological hotspots are often expressed as an increase in mixed layer rates of net community production. Overall, the large number of these hotspots support the growing evidence that submesoscale processes are important drivers in upper ocean biological production.Funding for this work came from the National Science Foundation (R.H.R.S. and D.J.M) (OCE-0925284, OCE-1048897, and OCE- 1029676) and the National Aeronautics and Space Administration (D.J.M.) (NNX08AL71G and NNX13AE47G)

    Biological production, export efficiency, and phytoplankton communities across 8000 km of the South Atlantic

    Get PDF
    Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 31 (2017): 1066–1088, doi:10.1002/2016GB005488.In situ oxygen tracers (triple oxygen isotope and oxygen/argon ratios) were used to evaluate meridional trends in surface biological production and export efficiency across ~8000 km of the tropical and subtropical South Atlantic in March–May 2013. We used observations of picophytoplankton, nanophytoplankton, and microphytoplankton to evaluate community structure and diversity and assessed the relationships of these characteristics with production, export efficiency, and particulate organic carbon (POC) fluxes. Rates of productivity were relatively uniform along most of the transect with net community production (NCP) between 0 and 10 mmol O2 m−2 d−1, gross primary production (GPP) between 40 and 100 mmol O2 m−2 d−1, and NCP/GPP, a measure of export efficiency, ranging from 0.1 to 0.2 (0.05–0.1 in carbon units). However, notable exceptions to this basin-scale homogeneity included two locations with highly enhanced NCP and export efficiency compared to surrounding regions. Export of POC and particulate nitrogen, derived from sediment traps, correlated with GPP across the transect, over which the surface community was dominated numerically by picophytoplankton. NCP, however, did not correlate with POC flux; the mean difference between NCP and POC flux was similar to published estimates of dissolved organic carbon export from the surface ocean. The interrelated rates of production presented in this work contribute to the understanding, building on the framework of better-studied ocean basins, of how carbon is biologically transported between the atmosphere and the deep ocean.National Science Foundation (NSF) Grant Number: OCE 1029676; Gordon and Betty Moore Foundation Grant Grant Number: 537.01; Woods Hole Oceanographic Institution (WHOI); WHOI Devonshire Postdoctoral Scholarship; National Defense Science and Engineering Graduate Fellowship; WHOI Ocean Life Institute; Woods Hole Oceanographic Institution (WHOI) Ocean and Climate Change Institute NSF Grant Numbers: OCE 1029676, OCE 11543202018-01-1

    Microbiota dynamics, metabolic and immune interactions in the cervicovaginal environment and their role in spontaneous preterm birth

    Get PDF
    Differences in the cervicovaginal microbiota are associated with spontaneous preterm birth (sPTB), a significant cause of infant morbidity and mortality. Although establishing a direct causal link between cervicovaginal microbiota and sPTB remains challenging, recent advancements in sequencing technologies have facilitated the identification of microbial markers potentially linked to sPTB. Despite variations in findings, a recurring observation suggests that sPTB is associated with a more diverse and less stable vaginal microbiota across pregnancy trimesters. It is hypothesized that sPTB risk is likely to be modified via an intricate host-microbe interactions rather than due to the presence of a single microbial taxon or broad community state. Nonetheless, lactobacilli dominance is generally associated with term outcomes and contributes to a healthy vaginal environment through the production of lactic acid/ maintenance of a low pH that excludes other pathogenic microorganisms. Additionally, the innate immunity of the host and metabolic interactions between cervicovaginal microbiota, such as the production of bacteriocins and the use of proteolytic enzymes, exerts a profound influence on microbial populations, activities, and host immune responses. These interplays collectively impact pregnancy outcomes. This review aims to summarize the complexity of cervicovaginal environment and microbiota dynamics, and associations with bacterial vaginosis and sPTB. There is also consideration on how probiotics may mitigate the risk of sPTB and bacterial vaginosis

    Shallow ponds are heterogeneous habitats within a temperate salt marsh ecosystem

    Get PDF
    Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Biogeosciences 122 (2017): 1371–1384, doi:10.1002/2017JG003780.Integrating spatial heterogeneity into assessments of salt marsh biogeochemistry is becoming increasingly important because disturbances that reduce plant productivity and soil drainage may contribute to an expansion of shallow ponds. These permanently inundated and sometimes prominent landscape features can exist for decades, yet little is known about pond biogeochemistry or their role in marsh ecosystem functioning. We characterized three ponds in a temperate salt marsh (MA, USA) over alternating periods of tidal isolation and flushing, during summer and fall, by evaluating the composition of plant communities and organic matter pools and measuring surface water oxygen, temperature, and conductivity. The ponds were located in the high marsh and had similar depths, temperatures, and salinities. Despite this, they had different levels of suspended particulate, dissolved, and sediment organic matter and abundances of phytoplankton, macroalgae, and Ruppia maritima. Differences in plant communities were reflected in pond metabolism rates, which ranged from autotrophic to heterotrophic. Integrating ponds into landcover-based estimates of marsh metabolism resulted in slower rates of net production (−8.1 ± 0.3 to −15.7 ± 0.9%) and respiration (−2.9 ± 0.5 to −10.0 ± 0.4%), compared to rates based on emergent grasses alone. Seasonality had a greater effect on pond water chemistry, organic matter pools, and algal abundances than tidal connectivity. Alternating stretches of tidal isolation and flushing did not affect pond salinities or algal communities, suggesting that exchange between ponds and nearby creeks was limited. Overall, we found that ponds are heterogeneous habitats and future expansion could reduce landscape connectivity and the ability of marshes to capture and store carbon.National Science Foundation Grant Number: OCE1233678; PIE-LTER Grant Number: OCE1238212; TIDE Grant Number: OCE13544942017-12-1

    Rofecoxib and cardiovascular adverse events in adjuvant treatment of colorectal cancer

    Get PDF
    Background Selective cyclooxygenase inhibitors may retard the progression of cancer, but they have enhanced thrombotic potential. We report on cardiovascular adverse events in patients receiving rofecoxib to reduce rates of recurrence of colorectal cancer. Methods All serious adverse events that were cardiovascular thrombotic events were reviewed in 2434 patients with stage II or III colorectal cancer participating in a randomized, placebo-controlled trial of rofecoxib, 25 mg daily, started after potentially curative tumor resection and chemotherapy or radiotherapy as indicated. The trial was terminated prematurely owing to worldwide withdrawal of rofecoxib. To examine possible persistent risks, we examined cardiovascular thrombotic events reported up to 24 months after the trial was closed. Results The median duration of active treatment was 7.4 months. The 1167 patients receiving rofecoxib and the 1160 patients receiving placebo were well matched, with a median follow-up period of 33.0 months (interquartile range, 27.6 to 40.1) and 33.4 months (27.7 to 40.4), respectively. Of the 23 confirmed cardiovascular thrombotic events, 16 occurred in the rofecoxib group during or within 14 days after the treatment period, with an estimated relative risk of 2.66 (from the Cox proportional-hazards model; 95% confidence interval [CI], 1.03 to 6.86; P = 0.04). Analysis of the Antiplatelet Trialists’ Collaboration end point (the combined incidence of death from cardiovascular, hemorrhagic, and unknown causes; of nonfatal myocardial infarction; and of nonfatal ischemic and hemorrhagic stroke) gave an unadjusted relative risk of 1.60 (95% CI, 0.57 to 4.51; P = 0.37). Fourteen more cardiovascular thrombotic events, six in the rofecoxib group, were reported within the 2 years after trial closure, with an overall unadjusted relative risk of 1.50 (95% CI, 0.76 to 2.94; P = 0.24). Four patients in the rofecoxib group and two in the placebo group died from thrombotic causes during or within 14 days after the treatment period, and during the follow-up period, one patient in the rofecoxib group and five patients in the placebo group died from cardiovascular causes. Conclusions Rofecoxib therapy was associated with an increased frequency of adverse cardiovascular events among patients with a median study treatment of 7.4 months’ duration. (Current Controlled Trials number, ISRCTN98278138.

    Exploring stakeholders\u27 perceptions of the acceptability, usability, and dissemination of the australian 24-hour movement guidelines for the early years

    Get PDF
    Background: Australian 24-Hour Movement Guidelines for the Early Years were recently developed. To maximize the uptake of the guidelines, perceptions of key stakeholders were sought. Methods: Thirty-five stakeholders (11% Aboriginal or Torres Strait Islander descent) participated in focus groups or key informant interviews. Stakeholders included parents of children aged 0-5 years, early childhood educators, and health and policy professionals, recruited using convenience and snowballing techniques. Focus groups and interviews were audio-recorded and transcribed verbatim. Data were analyzed inductively using thematic analysis. Results: There was general acceptance of the Movement Guidelines. The stakeholders suggested that the Guidelines were highly aspirational and needed to be carefully messaged, so parents did not feel guilty if their child was not meeting them. Stakeholders identified that the messaging needed to be culturally appropriate and visually appealing. Dissemination strategies differed depending on the stakeholder. Conclusion: Seeking stakeholder perceptions is an important process in the development of national Movement Guidelines. This study successfully examined stakeholders\u27 perceptions regarding the acceptability, usability, and dissemination of the Australian 24-Hour Movement Guidelines. Effective and innovative strategies for maximizing compliance and uptake of the Guidelines should be prioritized

    Nutrient enrichment induces dormancy and decreases diversity of active bacteria in salt marsh sediments

    Get PDF
    © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Nature Communications 7 (2016): 12881, doi:10.1038/ncomms12881.Microorganisms control key biogeochemical pathways, thus changes in microbial diversity, community structure and activity can affect ecosystem response to environmental drivers. Understanding factors that control the proportion of active microbes in the environment and how they vary when perturbed is critical to anticipating ecosystem response to global change. Increasing supplies of anthropogenic nitrogen to ecosystems globally makes it imperative that we understand how nutrient supply alters active microbial communities. Here we show that nitrogen additions to salt marshes cause a shift in the active microbial community despite no change in the total community. The active community shift causes the proportion of dormant microbial taxa to double, from 45 to 90%, and induces diversity loss in the active portion of the community. Our results suggest that perturbations to salt marshes can drastically alter active microbial communities, however these communities may remain resilient by protecting total diversity through increased dormancy
    • 

    corecore