13 research outputs found

    'A Divided Soul'? the Cold War odyssey of O. John Rogge

    Get PDF
    In 1948 O. John Rogge, a prominent American liberal, was a contender for the Progressive Party's vice-presidential nomination. He was then a man of the Left: an activist in the international peace movement, a champion of radical causes and a defender of organizations deemed subversive by the Department of Justice. In 1951 he persuaded his\ud client to turn government witness in the Rosenberg espionage trial and was converted into 'Rogge the Rat' by his former allies. In tracing this transformation, this paper will argue that Rogge was neither a typical Cold War apostate nor a typical anti-Stalinist intellectual. Instead, his political trajectory was the outcome of a failed attempt to steer global politics away from Cold War dichotomies. The paper will therefore throw new light\ud both on the movement to find a 'third way' between East and West, and on the phenomenon of non-communist Left activism during the early Cold War

    Retrotransposons Are the Major Contributors to the Expansion of the Drosophila ananassae Muller F Element

    No full text
    The discordance between genome size and the complexity of eukaryotes can partly be attributed to differences in repeat density. The Muller F element (∼5.2 Mb) is the smallest chromosome in Drosophila melanogaster, but it is substantially larger (>18.7 Mb) in D. ananassae. To identify the major contributors to the expansion of the F element and to assess their impact, we improved the genome sequence and annotated the genes in a 1.4-Mb region of the D. ananassae F element, and a 1.7-Mb region from the D element for comparison. We find that transposons (particularly LTR and LINE retrotransposons) are major contributors to this expansion (78.6%), while Wolbachia sequences integrated into the D. ananassae genome are minor contributors (0.02%). Both D. melanogaster and D. ananassae F-element genes exhibit distinct characteristics compared to D-element genes (e.g., larger coding spans, larger introns, more coding exons, and lower codon bias), but these differences are exaggerated in D. ananassae. Compared to D. melanogaster, the codon bias observed in D. ananassae F-element genes can primarily be attributed to mutational biases instead of selection. The 5′ ends of F-element genes in both species are enriched in dimethylation of lysine 4 on histone 3 (H3K4me2), while the coding spans are enriched in H3K9me2. Despite differences in repeat density and gene characteristics, D. ananassae F-element genes show a similar range of expression levels compared to genes in euchromatic domains. This study improves our understanding of how transposons can affect genome size and how genes can function within highly repetitive domains
    corecore