4,605 research outputs found
Discovery of a planetary-sized object in the scattered Kuiper belt
We present the discovery and initial physical and dynamical characterization
of the object 2003 UB313. The object is sufficiently bright that for all
reasonable values of the albedo it is certain to be larger than Pluto.
Pre-discovery observations back to 1989 are used to obtain an orbit with
extremely small errors. The object is currently at aphelion in what appears to
be a typical orbit for a scattered Kuiper belt object except that it is
inclined by about 44 degrees from the ecliptic. The presence of such a large
object at this extreme inclination suggests that high inclination Kuiper belt
objects formed preferentially closer to the sun. Observations from Gemini
Observatory show that the infrared spectrum is, like that of Pluto, dominated
by the presence of frozen methane, though visible photometry shows that the
object is almost neutral in color compared to Pluto's extremely red color. 2003
UB313 is likely to undergo substantial seasonal change over the large range of
heliocentric distances that it travels; Pluto at its current distance is likely
to prove a useful analog for better understanding the range of seasonal changes
on this body.Comment: 9 pages, 1 figur
Black Hole Radiation and Volume Statistical Entropy
The simplest possible equation for Hawking radiation, and other black hole
radiated power is derived in terms of black hole density. Black hole density
also leads to the simplest possible model of a gas of elementary constituents
confined inside a gravitational bottle of Schwarzchild radius at tremendous
pressure, which yields identically the same functional dependence as the
traditional black hole entropy. Variations of Sbh can be obtained which depend
on the occupancy of phase space cells. A relation is derived between the
constituent momenta and the black hole radius which is similar to the Compton
wavelength relation.Comment: 11 pages, no figures. Key Words: Black Hole Entropy, Hawking
Radiation, Black Hole density. This is a better pdf versio
Near Infrared Surface Properties of the Two Intrinsically Brightest Minor Planets (90377) Sedna and (90482) Orcus
We present low resolution K band spectra taken at the Gemini 8 meter
telescope of (90377) Sedna and (90482) Orcus (provisional designations 2003
VB12 and 2004 DW, respectively), currently the two minor planets with the
greatest absolute magnitudes (i.e. the two most reflective minor planets). We
place crude limits on the surface composition of these two bodies using a Hapke
model for a wide variety of assumed albedos. The unusual minor planet (90377)
Sedna was discovered on November 14, 2003 UT at roughly 90 AU with 1.6 times
the heliocentric distance and perihelion distance of any other bound minor
planet. It is the first solar system object discovered between the Kuiper Belt
and the Oort Cloud, and may represent a transition population between the two.
The reflectance spectrum of (90377) Sedna appears largely featureless at the
current signal-to-noise ratio, suggesting a surface likely to be highly
processed by cosmic rays. For large grain models (100 micron to 1 cm) we find
that (90377) Sedna must have less than 70% surface fraction of water ice and
less than 60% surface fraction of methane ice to 3 sigma confidence. Minor
planet (90482) Orcus shows strong water ice absorption corresponding to less
than 50% surface fraction for grain models 25 micron and larger. Orcus cannot
have more than 30% of its surface covered by large (100 mm to 1 cm) methane
grains to 3 sigma confidence.Comment: Accepted for publication in the Astrophysical Journa
Nuclear Magnetohydrodynamic EMP, Solar Storms, and Substorms
In addition to a fast electromagnetic pulse (EMP), a high altitude nuclear
burst produces a relatively slow magnetohydrodynarnic EMP (MHD EMP), whose
effects are like those from solar storm geomagnetically induced currents (SS
GIC). The MHD EMP electric field E < 10^-1 V/m and lasts < 10^2 sec, whereas
for solar storms E > 10^-2 V/m and lasts >10^3 sec. Although the solar storm
electric field is lower than MHD EMP, the solar storm effects are generally
greater due to their much longer duration. Substorms produce much smaller
effects than SS GIC, but occur much more frequently. This paper describes the
physics of such geomagnetic disturbances and analyzes their effects.Comment: 29 pages, 14 figures, 5 table
An approach to the problem of reconstructing polyhedra from two or more of their perspective projections
Reconstructing polyhedrons from perspective projection
The Surface of 2003 EL_(61) in the Near-Infrared
We report the detection of crystalline water ice on the surface of 2003 EL_(61). Reflectance spectra were collected from the Gemini North telescope in the 1.0 to 2.4 ÎĽm wavelength range and from the Keck telescope across the 1.4-2.4 ÎĽm wavelength range. The signature of crystalline water ice is obvious in all data collected. Like the surfaces of many outer solar system bodies, the surface of 2003 EL_(61) is rich in crystalline water ice, which is energetically less favored than amorphous water ice at low temperatures, suggesting that resurfacing processes may be taking place. The near-infrared color of the object is much bluer than a pure water ice model. Adding a near-infrared blue component such as hydrogen cyanide or phyllosilicate clays improves the fit considerably, with hydrogen cyanide providing the greatest improvement. The addition of hydrated tholins and bitumens also improves the fit, but is inconsistent with the neutral V - J reflectance of 2003 EL_(61). A small decrease in reflectance beyond 2.3 ÎĽm may be attributable to cyanide salts. Overall, the reflected light from 2003 EL_(61) is best fit by a model of 2/3-4/5 pure crystalline water ice and 1/3-1/5 near-infrared blue component such as hydrogen cyanide or kaolinite. The surface of 2003 EL_(61) is unlikely to be covered by significant amounts of dark material such as carbon black, as our pure ice models reproduce published albedo estimates derived from the spin state of 2003 EL_(61)
A cross-sectional analysis of video games and attention deficit hyperactivity disorder symptoms in adolescents
BACKGROUND: Excessive use of the Internet has been associated with attention deficit hyperactivity disorder (ADHD), but the relationship between video games and ADHD symptoms in adolescents is unknown. METHOD: A survey of adolescents and parents (n = 72 adolescents, 72 parents) was performed assessing daily time spent on the Internet, television, console video games, and Internet video games, and their association with academic and social functioning. Subjects were high school students in the ninth and tenth grade. Students were administered a modified Young's Internet Addiction Scale (YIAS) and asked questions about exercise, grades, work, and school detentions. Parents were asked to complete the Conners' Parent Rating Scale (CPRS) and answer questions regarding medical/psychiatric conditions in their child. RESULTS: There was a significant association between time spent playing games for more than one hour a day and YIAS (p < 0.001), overall grade point average (p ≤ 0.019), and the "Inattention" and "ADHD" components of the CPRS (p ≤ 0.001 and p ≤ 0.020, respectively). No significant association was found between body mass index (BMI), exercise, number of detentions, or the "Oppositional" and "Hyperactivity" components of CPRS and video game use. CONCLUSION: Adolescents who play more than one hour of console or Internet video games may have more or more intense symptoms of ADHD or inattention than those who do not. Given the possible negative effects these conditions may have on scholastic performance, the added consequences of more time spent on video games may also place these individuals at increased risk for problems in school
- …