553 research outputs found

    On Some Universal Features of the Holographic Quantum Complexity of Bulk Singularities

    Get PDF
    We perform a comparative study of the time dependence of the holographic quantum complexity of some space like singular bulk gravitational backgrounds. This is done by considering the two available notions of complexity, one that relates it to the maximal spatial volume and the other that relates it to the classical action of the Wheeler-de Witt patch. We calculate and compare the leading and the next to leading terms and find some universal features. The complexity decreases towards the singularity for both definitions, for all types of singularities studied. In addition the leading terms have the same quantitative behavior for both definitions in restricted number of cases and the behaviour itself is different for different singular backgrounds. The quantitative details of the next to leading terms, such as their specific form of time dependence, are found not to be universal. They vary between the different cases and between the different bulk definitions of complexity. We also address some technical points inherent to the calculation.Comment: 24 pages, 6 figures. v2: minor correction

    A bulk manifestation of Krylov complexity

    Full text link
    There are various definitions of the concept of complexity in Quantum Field Theory as well as for finite quantum systems. For several of them there are conjectured holographic bulk duals. In this work we establish an entry in the AdS/CFT dictionary for one such class of complexity, namely Krylov or K-complexity. For this purpose we work in the double-scaled SYK model which is dual in a certain limit to JT gravity, a theory of gravity in AdS2_2. In particular, states on the boundary have a clear geometrical definition in the bulk. We use this result to show that Krylov complexity of the infinite-temperature thermofield double state on the boundary of AdS2_2 has a precise bulk description in JT gravity, namely the length of the two-sided wormhole. We do this by showing that the Krylov basis elements, which are eigenstates of the Krylov complexity operator, are mapped to length eigenstates in the bulk theory by subjecting K-complexity to the bulk-boundary map identifying the bulk/boundary Hilbert spaces. Our result makes extensive use of chord diagram techniques and identifies the Krylov basis of the boundary quantum system with fixed chord number states building the bulk gravitational Hilbert space.Comment: v1: 37 pages + appendices, 12 figures. v2: published versio

    Strong coupling expansion of chiral models

    Full text link
    A general precedure is outlined for an algorithmic implementation of the strong coupling expansion of lattice chiral models on arbitrary lattices. A symbolic character expansion in terms of connected values of group integrals on skeleton diagrams may be obtained by a fully computerized approach.Comment: 2 pages, PostScript file, contribution to conference LATTICE '9

    On Thermodynamical Properties of Some Coset CFT Backgrounds

    Full text link
    We investigate the thermodynamical features of two Lorentzian signature backgrounds that arise in string theory as exact CFTs and possess more than two disconnected asymptotic regions: the 2-d charged black hole and the Nappi-Witten cosmological model. We find multiple smooth disconnected Euclidean versions of the charged black hole background. They are characterized by different temperatures and electro-chemical potentials. We show that there is no straightforward analog of the Hartle-Hawking state that would express these thermodynamical features. We also obtain multiple Euclidean versions of the Nappi-Witten cosmological model and study their singularity structure. It suggests to associate a non-isotropic temperature with this background.Comment: 1+39 pages, harvmac, 8 eps figure

    Vacuum structure of CP^N sigma models at theta=pi

    Full text link
    We show that parity symmetry is not spontaneously broken in the CP^N sigma model for any value of N when the coefficient of the θ\theta--term becomes θ=π\theta=\pi (mod 2π2\pi). The result follows from a non-perturbative analysis of the nodal structure of the vacuum functional ψ0(z)\psi_0(z). The dynamical role of sphalerons turns out to be very important for the argument. The result introduces severe constraints on the possible critical behavior of the models at θ=π\theta=\pi (mod 2π2\pi).Comment: 8 pages, revtex, to appear in Phys. Rev. Let

    Nonrigid chiral soliton for the octet and decuplet baryons

    Full text link
    Systematic treatment of the collective rotation of the nonrigid chiral soliton is developed in the SU(3) chiral quark soliton model and applied to the octet and decuplet baryons. The strangeness degrees of freedom are treated by a simplified bound-state approach which omits the locality of the kaon wave function. Then, the flavor rotation is divided into the isospin rotation and the emission and absorption of the kaon. The kaon Hamiltonian is diagonalized by the Hartree approximation. The soliton changes the shape according to the strangeness. The baryons appear as the rotational bands of the combined system of the soliton and the kaon.Comment: 11 pages(LaTex), 1 figures(eps

    Ricci flow and black holes

    Get PDF
    Gradient flow in a potential energy (or Euclidean action) landscape provides a natural set of paths connecting different saddle points. We apply this method to General Relativity, where gradient flow is Ricci flow, and focus on the example of 4-dimensional Euclidean gravity with boundary S^1 x S^2, representing the canonical ensemble for gravity in a box. At high temperature the action has three saddle points: hot flat space and a large and small black hole. Adding a time direction, these also give static 5-dimensional Kaluza-Klein solutions, whose potential energy equals the 4-dimensional action. The small black hole has a Gross-Perry-Yaffe-type negative mode, and is therefore unstable under Ricci flow. We numerically simulate the two flows seeded by this mode, finding that they lead to the large black hole and to hot flat space respectively, in the latter case via a topology-changing singularity. In the context of string theory these flows are world-sheet renormalization group trajectories. We also use them to construct a novel free energy diagram for the canonical ensemble.Comment: 31 pages, 14 color figures. v2: Discussion of the metric on the space of metrics corrected and expanded, references adde

    D-branes at multicritical points

    Get PDF
    The moduli space of c=1 conformal field theories in two dimensions has a multicritical point, where a circle theory is equivalent to an orbifold theory. We analyse all the conformal branes in both descriptions of this theory, and find convincing evidence that the full brane spectrum coincides. This shows that the equivalence of the two descriptions at this multicritical point extends to the boundary sector. We also perform the analogous analysis for one of the multicritical points of the N=1 superconformal field theories at c=3/2. Again the brane spectra are identical for both descriptions, however the identification is more subtle.Comment: 32 pages, 2 figure
    corecore