15 research outputs found

    Energy-efficient communication protocol for wireless microsensor networks

    No full text
    Wireless distributed microsensor systems will enable the reliable monitoring of a variety of environments for both civil and military applications. In this paper, we look at communication protocols, which can have significant impact on the overall energy dissipation of these networks. Based on our findings that the conventional protocols of direct transmission, minimum-transmission-energy, multihop routing, and static clustering may not be optimal for sensor networks, we propose LEACH (Low-Energy Adaptive Clustering Hierarchy), a clustering-based protocol that utilizes randomized rotation of local cluster base stations (cluster-heads) to evenly distribute the energy load among the sensors in the network. LEACH uses localized coordination to enable scalability and robustness for dynamic networks, and incorporates data fusion into the routing protocol to reduce the amount of information that must be transmitted to the base station. Simulations show that LEACH can achieve as much as a factor of 8 reduction in energy dissipation compared with conventional routing protocols. In addition, LEACH is able to distribute energy dissipation evenly throughout the sensors, doubling the useful system lifetime for the networks we simulated

    Adaptive Protocols for Information Dissemination in Wireless Sensor Networks

    No full text
    In this paper, we present a family of adaptive protocols, called SPIN (Sensor Protocols for Information via Negotiation) , that eciently disseminates information among sensors in an energy-constrained wireless sensor network. Nodes running a SPIN communication protocol name their data using high-level data descriptors, called meta-data. They use meta-data negotiations to eliminate the transmission of redundant data throughout the network. In addition, SPIN nodes can base their communication decisions both upon application-specic knowledge of the data and upon knowledge of the resources that are available to them. This allows the sensors to eciently distribute data given a limited energy supply. We simulate and analyze the performance of two specic SPIN protocols, comparing them to other possible approaches and a theoretically optimal protocol. We nd that the SPIN protocols can deliver 60% more data for a given amount of energy than conventional approaches. We also nd that, in terms..
    corecore