5 research outputs found

    Potential environmental transmission routes of SARS-CoV-2 inside a large meat processing plant experiencing COVID-19 clusters

    Get PDF
    Worldwide exceptionally many COVID-19 clusters were observed in meat processing plants. Many contributing factors, promoting transmission, were suggested, including climate conditions in cooled production rooms favorable for environmental transmission but actual sampling studies are lacking. We aimed to assess SARS-CoV-2 contamination of air and surfaces to gain insight in potential environmental transmission in a large Dutch meat processing plant experiencing COVID-19 clusters. We performed SARS-CoV-2 screening of workers operating in cooled production rooms and intensive environmental sampling during a two-week study period in June 2020. Sampling of air (both stationary and personal), settling dust, ventilation systems, and sewage was performed. Swabs were collected from high-touch surfaces and workers’ hands. Screening of workers was done using oronasopharyngeal swabs. Samples were tested for presence of SARS-CoV-2 RNA by RT-qPCR. Of the 76 (predominantly asymptomatic) workers tested, 27 (35.5%) were SARS-CoV-2 RNA positive with modest to low viral loads (Ct≥29.7). In total, 6 out of 203 surface swabs were positive (Ct ≥38), being swabs taken from communal touchscreens/handles. One of the 12 personal air samples and one of the 4 sewage samples were positive, RNA levels were low (Ct≥38). All other environmental samples tested negative. Although one-third of workers tested SARS-CoV-2 RT-PCR positive, environmental contamination was limited. Hence widespread transmission of SARS-CoV-2 via air and surfaces was considered unlikely within this plant at the time of investigation in the context of strict COVID-19 control measures in place

    Detection of SARS-CoV-2 in Air and on Surfaces in Rooms of Infected Nursing Home Residents

    Get PDF
    There is an ongoing debate on airborne transmission of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) as a risk factor for infection. In this study, the level of SARS-CoV-2 in air and on surfaces of SARS-CoV-2 infected nursing home residents was assessed to gain insight in potential transmission routes. During outbreaks, air samples were collected using three different active and one passive air sampling technique in rooms of infected patients. Oropharyngeal swabs (OPS) of the residents and dry surface swabs were collected. Additionally, longitudinal passive air samples were collected during a period of 4 months in common areas of the wards. Presence of SARS-CoV-2 RNA was determined using RT-qPCR, targeting the RdRp- and E-genes. OPS, samples of two active air samplers and surface swabs with Ct-value ≤35 were tested for the presence of infectious virus by cell culture. In total, 360 air and 319 surface samples from patient rooms and common areas were collected. In rooms of 10 residents with detected SARS-CoV-2 RNA in OPS, SARS-CoV-2 RNA was detected in 93 of 184 collected environmental samples (50.5%) (lowest Ct 29.5), substantially more than in the rooms of residents with negative OPS on the day of environmental sampling (n = 2) (3.6%). SARS-CoV-2 RNA was most frequently present in the larger particle size fractions [>4 μm 60% (6/10); 1-4 μm 50% (5/10); <1 μm 20% (2/10)] (Fischer exact test P = 0.076). The highest proportion of RNA-positive air samples on room level was found with a filtration-based sampler 80% (8/10) and the cyclone-based sampler 70% (7/10), and impingement-based sampler 50% (5/10). SARS-CoV-2 RNA was detected in 10 out of 12 (83%) passive air samples in patient rooms. Both high-touch and low-touch surfaces contained SARS-CoV-2 genome in rooms of residents with positive OPS [high 38% (21/55); low 50% (22/44)]. In one active air sample, infectious virus in vitro was detected. In conclusion, SARS-CoV-2 is frequently detected in air and on surfaces in the immediate surroundings of room-isolated COVID-19 patients, providing evidence of environmental contamination. The environmental contamination of SARS-CoV-2 and infectious aerosols confirm the potential for transmission via air up to several meters

    A comprehensive sampling study on SARS-CoV-2 contamination of air and surfaces in a large meat processing plant experiencing COVID-19 clusters in June 2020.

    Get PDF
    Objective We aimed to assess SARS-CoV-2 contamination of air and surfaces to gain insight into potential occupational exposure in a large meat processing plant experiencing COVID-19 clusters. Methods: Oro-nasopharyngeal SARS-CoV-2 screening was performed in 76 workers. Environmental samples (n = 275) including air, ventilation systems, sewage, and swabs of high-touch surfaces and workers' hands were tested for SARS-CoV-2 RNA by real-time quantitative polymerase chain reaction. Results: Twenty-seven (35.5%) of the (predominantly asymptomatic) workers tested positive with modest to low viral loads (cycle threshold ≥ 29.7). Six of 203 surface swabs, 1 of 12 personal air samples, and one of four sewage samples tested positive; other samples tested negative. Conclusions: Although one third of workers tested positive, environmental contamination was limited. Widespread SARS-CoV-2 transmission via air and surfaces was considered unlikely within this plant at the time of investigation while strict COVID-19 control measures were already implemented

    Potential environmental transmission routes of SARS-CoV-2 inside a large meat processing plant experiencing COVID-19 clusters

    No full text
    Worldwide exceptionally many COVID-19 clusters were observed in meat processing plants. Many contributing factors, promoting transmission, were suggested, including climate conditions in cooled production rooms favorable for environmental transmission but actual sampling studies are lacking. We aimed to assess SARS-CoV-2 contamination of air and surfaces to gain insight in potential environmental transmission in a large Dutch meat processing plant experiencing COVID-19 clusters. We performed SARS-CoV-2 screening of workers operating in cooled production rooms and intensive environmental sampling during a two-week study period in June 2020. Sampling of air (both stationary and personal), settling dust, ventilation systems, and sewage was performed. Swabs were collected from high-touch surfaces and workers’ hands. Screening of workers was done using oronasopharyngeal swabs. Samples were tested for presence of SARS-CoV-2 RNA by RT-qPCR. Of the 76 (predominantly asymptomatic) workers tested, 27 (35.5%) were SARS-CoV-2 RNA positive with modest to low viral loads (Ct≥29.7). In total, 6 out of 203 surface swabs were positive (Ct ≥38), being swabs taken from communal touchscreens/handles. One of the 12 personal air samples and one of the 4 sewage samples were positive, RNA levels were low (Ct≥38). All other environmental samples tested negative. Although one-third of workers tested SARS-CoV-2 RT-PCR positive, environmental contamination was limited. Hence widespread transmission of SARS-CoV-2 via air and surfaces was considered unlikely within this plant at the time of investigation in the context of strict COVID-19 control measures in place
    corecore