3,930 research outputs found
Polarization Enhancement in Short Period Superlattices via Interfacial Intermixing
The effect of intermixing at the interface of short period
PbTiO/SrTiO superlattices is studied using first-principles density
functional theory. The results indicate that interfacial intermixing
significantly enhances the polarization within the superlattice. This
enhancement is directly related to the off-centering of Pb and Sr cations and
can be explained through a discussion of interacting dipoles. This picture
should be general for a wide range of multicomponent superlattices and may have
important consequences for the design of ferroelectric devices.Comment: 4 pages, 6 figure
Synthesis of cubic diamond in the graphite-magnesium carbonate and graphite-K2Mg(CO3)(2) systems at high pressure of 9-10 GPa region
Cubic diamond was synthesized with two systems, (1) graphite with pure magnesium carbonate (magnesite) and (2) graphite with mixed potassium and magnesium carbonate at pressures and temperatures above 9.5 GPa, 1600 degrees C and 9 GPa, 1650 degrees C, respectively. At these conditions (1) the pure magnesite is solid, whereas (2) the mixed carbonate exists as a melt. In this pressure range, graphite seems to be partially transformed into hexagonal diamond. Measured carbon isotope delta(13)C values for all the materials suggest that the origin of the carbon source to form cubic diamond was the initial graphite powder, and not the carbonates
Dynamic microscopic structures and dielectric response in the cubic-to-tetragonal phase transition for BaTiO3 studied by first-principles molecular dynamics simulation
The dynamic structures of the cubic and tetragonal phase in BaTiO3 and its
dielectric response above the cubic-to-tetragonal phase transition temperature
(Tp) are studied by first-principles molecular dynamics (MD) simulation. It's
shown that the phase transition is due to the condensation of one of the
transverse correlations. Calculation of the phonon properties for both the
cubic and tetragonal phase shows a saturation of the soft mode frequency near
60 cm-1 near Tp and advocates its order-disorder nature. Our first-principles
calculation leads directly to a two modes feature of the dielectric function
above Tp [Phys. Rev. B 28, 6097 (1983)], which well explains the long time
controversies between experiments and theories
Phase diagram analysis and crystal growth of solid solutions Ca_{1-x}Sr_xF_2
The binary phase diagram CaF--SrF was investigated by differential
thermal analysis (DTA). Both substances exhibit unlimited mutual solubility
with an azeotropic point showing a minimum melting temperature of
T_\mathrm{min}=1373^{\circ}_{0.582}_{0.418}_2$. Close to this composition, homogeneous single
crystals up to 30 mm diameter without remarkable segregation could be grown by
the Czochralski method.Comment: accepted for publication in J. Crystal Growt
Relative phase stability and lattice dynamics of NaNbO from first-principles calculations
We report total energy calculations for different crystal structures of
NaNbO over a range of unit cell volumes using the all-electron
full-potential (L)APW method. We employed both the local-density approximation
(LDA) and the Wu-Cohen form of the generalized gradient approximation (GGA-WC)
to test the accuracy of these functionals for the description of the complex
structural behavior of NaNbO. We found that LDA not only underestimates the
equilibrium volume of the system but also predicts an incorrect ground state
for this oxide. The GGA-WC functional, on the other hand, significantly
improves the equilibrium volume and provides relative phase stability in better
agreement with experiments. We then use the GGA-WC functional for the
calculation of the phonon dispersion curves of cubic NaNbO to identify the
presence of structural instabilities in the whole Brillouin zone. Finally, we
report comparative calculations of structural instabilities as a function of
volume in NaNbO and KNbO to provide insights for the understanding of
the structural behavior of KNaNbO solid solutions.Comment: Accepted for publication in Physical Review
Multiferroic BiFeO3-BiMnO3 Nanocheckerboard From First Principles
We present a first principles study of an unusual heterostructure, an
atomic-scale checkerboard of BiFeO3-BiMnO3, and compare its properties to the
two bulk constituent materials, BiFeO3 and BiMnO3. The "nanocheckerboard" is
found to have a multiferroic ground state with the desired properties of each
constituent: polar and ferrimagnetic due to BiFeO3 and BiMnO3, respectively.
The effect of B-site cation ordering on magnetic ordering in the BiFeO3-BiMnO3
system is studied. The checkerboard geometry is seen to give rise to a a novel
magnetostructural effect that is neither present in the bulk constituent
materials, nor in the layered BiFeO3-BiMnO3 superlattice.Comment: 15 pages, 14 figure
Enhancement of piezoelectricity in a mixed ferroelectric
We use first-principles density-functional total energy and polarization
calculations to calculate the piezoelectric tensor at zero temperature for both
cubic and simple tetragonal ordered supercells of Pb_3GeTe_4. The largest
piezoelectric coefficient for the tetragonal configuration is enhanced by a
factor of about three with respect to that of the cubic configuration. This can
be attributed to both the larger strain-induced motion of cations relative to
anions and higher Born effective charges in the tetragonal case. A normal mode
decomposition shows that both cation ordering and local relaxation weaken the
ferroelectric instability, enhancing piezoelectricity.Comment: 5 pages, revtex, 2 eps figure
Enhancing piezoelectricity through polarization-strain coupling in ferroelectric superlattices
Short period ferroelectric/ferroelectric BaTiO3 (BTO)/PbTiO3 (PTO)
superlattices are studied using density functional theory. Contrary to the
trends in paraelectric/ferroelectric superlattices the polarization remains
nearly constant for PTO concentrations below 50%. In addition, a significant
decrease in the c/a ratio below the PTO values were observed. Using a
superlattice effective Hamiltonian we predict an enhancement in the d33
piezoelectric coefficient peaking at ~75% PTO concentration due to the
different polarization-strain coupling in PTO and BTO layers. Further analysis
reveals that these trends are bulk properties which are a consequence of the
reduced brought about by the polarization saturation in the BTO layers
- …