13 research outputs found

    Effect of Cell Age and Membrane Rigidity on Red Blood Cell Shape in Capillary Flow

    Get PDF
    Blood flow in the microcirculatory system is crucially affected by intrinsic red blood cell (RBC) properties, such as their deformability. In the smallest vessels of this network, RBCs adapt their shapes to the flow conditions. Although it is known that the age of RBCs modifies their physical properties, such as increased cytosol viscosity and altered viscoelastic membrane properties, the evolution of their shape-adapting abilities during senescence remains unclear. In this study, we investigated the effect of RBC properties on the microcapillary in vitro flow behavior and their characteristic shapes in microfluidic channels. For this, we fractioned RBCs from healthy donors according to their age. Moreover, the membranes of fresh RBCs were chemically rigidified using diamide to study the effect of isolated graded-membrane rigidity. Our results show that a fraction of stable, asymmetric, off-centered slipper-like cells at high velocities decreases with increasing age or diamide concentration. However, while old cells form an enhanced number of stable symmetric croissants at the channel centerline, this shape class is suppressed for purely rigidified cells with diamide. Our study provides further knowledge about the distinct effects of age-related changes of intrinsic cell properties on the single-cell flow behavior of RBCs in confined flows due to inter-cellular age-related cell heterogeneity

    Effect of Cell Age and Membrane Rigidity on Red Blood Cell Shape in Capillary Flow

    Get PDF
    peer reviewedBlood flow in the microcirculatory system is crucially affected by intrinsic red blood cell (RBC) properties, such as their deformability. In the smallest vessels of this network, RBCs adapt their shapes to the flow conditions. Although it is known that the age of RBCs modifies their physical properties, such as increased cytosol viscosity and altered viscoelastic membrane properties, the evolution of their shape-adapting abilities during senescence remains unclear. In this study, we investigated the effect of RBC properties on the microcapillary in vitro flow behavior and their characteristic shapes in microfluidic channels. For this, we fractioned RBCs from healthy donors according to their age. Moreover, the membranes of fresh RBCs were chemically rigidified using diamide to study the effect of isolated graded-membrane rigidity. Our results show that a fraction of stable, asymmetric, off-centered slipper-like cells at high velocities decreases with increasing age or diamide concentration. However, while old cells form an enhanced number of stable symmetric croissants at the channel centerline, this shape class is suppressed for purely rigidified cells with diamide. Our study provides further knowledge about the distinct effects of age-related changes of intrinsic cell properties on the single-cell flow behavior of RBCs in confined flows due to inter-cellular age-related cell heterogeneity

    Highly Efficient Gene Editing of Cystic Fibrosis Patient-Derived Airway Basal Cells Results in Functional CFTR Correction

    Get PDF
    There is a strong rationale to consider future cell therapeutic approaches for cystic fibrosis (CF) in which autologous proximal airway basal stem cells, corrected for CFTR mutations, are transplanted into the patient's lungs. We assessed the possibility of editing the CFTR locus in these cells using zinc-finger nucleases and have pursued two approaches. The first, mutation-specific correction, is a footprint-free method replacing the CFTR mutation with corrected sequences. We have applied this approach for correction of ΔF508, demonstrating restoration of mature CFTR protein and function in air-liquid interface cultures established from bulk edited basal cells. The second is targeting integration of a partial CFTR cDNA within an intron of the endogenous CFTR gene, providing correction for all CFTR mutations downstream of the integration and exploiting the native CFTR promoter and chromatin architecture for physiologically relevant expression. Without selection, we observed highly efficient, site-specific targeted integration in basal cells carrying various CFTR mutations and demonstrated restored CFTR function at therapeutically relevant levels. Significantly, Omni-ATAC-seq analysis revealed minimal impact on the positions of open chromatin within the native CFTR locus. These results demonstrate efficient functional correction of CFTR and provide a platform for further ex vivo and in vivo editing. © 2020 The American Society of Gene and Cell TherapySuzuki et al. report correction of the CFTR defect in cystic fibrosis airway basal stem cells. They utilized gene-editing strategies either specific for the ΔF508 CFTR mutation or applicable to most CFTR mutations. Both approaches yielded highly efficient correction without selection, restoring CFTR function to therapeutically relevant levels

    Occult Pathologic Findings in Reduction Mammaplasty in 5781 Patients—An International Multicenter Study

    No full text
    Breast cancer is among the most commonly diagnosed cancers in the world, affecting one in eight women in their lifetimes. The disease places a substantial burden on healthcare systems in developed countries and often requires surgical correction. In spite of this, much of the breast cancer pathophysiology remains unknown, allowing for the cancer to develop to later stages prior to detection. Many women undergo reduction mammaplasties (RM) to adjust breast size, with over 500,000 operations being performed annually. Tissue samples from such procedures have drawn interest recently, with studies attempting to garner a better understanding of breast cancer's development. A number of samples have revealed nascent cancer developments that were previously undetected and unexpected. Investigating these so-called "occult" findings of cancer in otherwise healthy patients may provide further insight regarding risk factors and countermeasures. Here, we detail occult findings of cancer in reduction mammaplasty samples provided from a cohort of over 5000 patients from 16 different institutions in Europe. Although the majority of our resected breast tissue specimens were benign, our findings indicate that there is a continued need for histopathological examination. As a result, our study suggests that preoperative imaging should be routinely performed in patients scheduled for RM, especially those with risk factors of breast cancer, to identify and enable a primary oncologic approach
    corecore