152 research outputs found

    Resource:A Cellular Developmental Taxonomy of the Bone Marrow Mesenchymal Stem Cell Population in Mice

    Get PDF
    Mesenchymal stem cells (MSCs) play pivotal roles in tissue (re)generation. In the murine bone marrow, they are thought to reside within the Sca-1(+) CD51(+) bone marrow stromal cell population. Here, using scRNAseq, we aimed to delineate the cellularheterogeneity of this MSC-enriched population throughout development. At the fetal stage, the MSC population is relatively homogeneous with subsets predicted to contain stem/progenitor cells, based on transcriptional modeling and marker expression. These subsets decline in relative size throughout life, with postnatal emergence of specialized clusters, including hematopoietic stem/progenitor cell (HSPC) niches. In fetal development, these stromal HSPC niches are lacking, but subsets of endothelial cells express HSPC factors, suggesting that they may provide initial niches for emerging hematopoiesis. This cellular taxonomy of the MSC population upon development is anticipated to provide a resource aiding the prospective identification of cellular subsets and molecular mechanisms driving bone marrow (re)generation

    Myeloid cells promote interferon signaling-associated deterioration of the hematopoietic system

    Get PDF
    Innate and adaptive immune cells participate in the homeostatic regulation of hematopoietic stem cells (HSCs). Here, we interrogate the contribution of myeloid cells, the most abundant cell type in the mammalian bone marrow, in a clinically relevant mouse model of neutropenia. Long-term genetic depletion of neutrophils and eosinophils results in activation of multipotent progenitors but preservation of HSCs. Depletion of myeloid cells abrogates HSC expansion, loss of serial repopulation and lymphoid reconstitution capacity and remodeling of HSC niches, features previously associated with hematopoietic aging. This is associated with mitigation of interferon signaling in both HSCs and their niches via reduction of NK cell number and activation. These data implicate myeloid cells in the functional decline of hematopoiesis, associated with activation of interferon signaling via a putative neutrophil-NK cell axis. Innate immunity may thus come at the cost of system deterioration through enhanced chronic inflammatory signaling to stem cells and their niches

    Interferon-gamma impairs maintenance and alters hematopoietic support of bone marrow mesenchymal stromal cells

    Get PDF
    Bone marrow (BM) mesenchymal stromal cells (MSCs) provide microenvironmental support to hematopoietic stem and progenitor cells (HSPCs). Culture-expanded MSCs are interesting candidates for cellular therapies due to their immunosuppressive and regenerative potential which can be further enhanced by pretreatment with interferon-gamma (IFN-γ). However, it remains unknown whether IFN-γ can also influence hematopoietic support by BM-MSCs. In this study, we elucidate the impact of IFN-γ on the hematopoietic support of BM-MSCs. We found that IFN-γ increases expression of interleukin (IL)-6 and stem cell factor by human BM-MSCs. IFN-γ-treated BM-MSCs drive HSPCs toward myeloid commitment in vitro, but impair subsequent differentiation of HSPC. Moreover, IFN-γ-ARE-Del mice with increased IFN-γ production specifically lose their BM-MSCs, which correlates with a loss of hematopoietic stem cells\u27 quiescence. Although IFN-γ treatment enhances the immunomodulatory function of MSCs in a clinical setting, we conclude that IFN-γ negatively affects maintenance of BM-MSCs and their hematopoietic support in vitro and in vivo

    Adapted dandelions increase seed dispersal potential when they are attacked by root herbivores

    Get PDF
    Plants allow their offspring to escape unfavourable local conditions through seed dispersal. Whether plants use this strategy to escape herbivores is not well understood. Here, we explore how different Taraxacum officinale populations modify seed dispersal in response to root herbivore attack by Melolontha melolontha in the field. Root herbivore attack increases seed dispersal potential through a reduction in seed weight in populations that have evolved under high root herbivore pressure, but not in populations that have evolved under low pressure. This increase in dispersal potential is associated with reduced germination, suggesting that adapted plants trade dispersal for establishment. Analysis of vegetative growth parameters suggests that increased dispersal is not the result of stress flowering. These results suggest that root herbivory selects for genotypes that increase their dispersal ability in response to herbivore attack

    A Single-Cell Taxonomy Predicts Inflammatory Niche Remodeling to Drive Tissue Failure and Outcome in Human AML

    Get PDF
    Cancer initiation is orchestrated by an interplay between tumor-initiating cells and their stromal/immune environment. Here, by adapted single-cell RNA sequencing, we decipher the predicted signaling between tissue-resident hematopoietic stem/progenitor cells (HSPC) and their neoplastic counterparts with their native niches in the human bone marrow. LEPR + stromal cells are identified as central regulators of hematopoiesis through predicted interactions with all cells in the marrow. Inflammatory niche remodeling and the resulting deprivation of critical HSPC regulatory factors are predicted to repress high-output hematopoietic stem cell subsets in NPM1-mutated acute myeloid leukemia (AML), with relative resistance of clonal cells. Stromal gene signatures reflective of niche remodeling are associated with reduced relapse rates and favorable outcomes after chemotherapy across all genetic risk categories. Elucidation of the intercellular signaling defining human AML, thus, predicts that inflammatory remodeling of stem cell niches drives tissue repression and clonal selection but may pose a vulnerability for relapse-initiating cells in the context of chemotherapeutic treatment.</p
    corecore