35 research outputs found

    Human mandibular shape is associated with masticatory muscle force

    Get PDF
    Understanding how and to what extent forces applied to the mandible by the masticatory muscles influence its form, is of considerable importance from clinical, anthropological and evolutionary perspectives. This study investigates these questions. Head CT scans of 382 adults were utilized to measure masseter and temporalis muscle cross-sectional areas (CSA) as a surrogate for muscle force, and 17 mandibular anthropometric measurements. Sixty-two mandibles of young individuals (20-40 years) whose scans were without artefacts (e.g., due to tooth filling) were segmented and landmarked for geometric morphometric analysis. The association between shape and muscle CSA (controlled for size) was assessed using two-block partial least squares analysis. Correlations were computed between mandibular variables and muscle CSAs (all controlled for size). A significant association was found between mandibular shape and muscle CSAs, i.e. larger CSAs are associated with a wider more trapezoidal ramus, more massive coronoid, more rectangular body and a more curved basal arch. Linear measurements yielded low correlations with muscle CSAs. In conclusion, this study demonstrates an association between mandibular muscle force and mandibular shape, which is not as readily identified from linear measurements. Retrodiction of masticatory muscle force and so of mandibular loading is therefore best based on overall mandibular shape

    Maximum occlusal force and medial mandibular flexure in relation to vertical facial pattern: a cross-sectional study

    Get PDF
    BACKGROUND: Vertical facial pattern may be related to the direction of pull of the masticatory muscles, yet its effect on occlusal force and elastic deformation of the mandible still is unclear. This study tested whether the variation in vertical facial pattern is related to the variation in maximum occlusal force (MOF) and medial mandibular flexure (MMF) in 51 fully-dentate adults. METHODS: Data from cephalometric analysis according to the method of Ricketts were used to divide the subjects into three groups: Dolichofacial (n = 6), Mesofacial (n = 10) and Brachyfacial (n = 35). Bilateral MOF was measured using a cross-arch force transducer placed in the first molar region. For MMF, impressions of the mandibular occlusal surface were made in rest (R) and in maximum opening (O) positions. The impressions were scanned, and reference points were selected on the occlusal surface of the contralateral first molars. MMF was calculated by subtracting the intermolar distance in O from the intermolar distance in R. Data were analysed by ANCOVA (fixed factors: facial pattern, sex; covariate: body mass index (BMI); alpha = 0.05). RESULTS: No significant difference of MOF or MMF was found among the three facial patterns (P = 0.62 and P = 0.72, respectively). BMI was not a significant covariate for MOF or MMF (P > 0.05). Sex was a significant factor only for MOF (P = 0.007); males had higher MOF values than females. CONCLUSION: These results suggest that MOF and MMF did not vary as a function of vertical facial pattern in this Brazilian sample
    corecore