291 research outputs found

    Induction of Epidermal Growth Factor Receptor Expression by Epstein-Barr Virus Latent Membrane Protein 1 C-Terminal-Activating Region 1 Is Mediated by NF- B p50 Homodimer/Bcl-3 Complexes

    Get PDF
    The Epstein-Barr virus (EBV) is associated with the development of numerous malignancies, including the epithelial malignancy nasopharyngeal carcinoma (NPC). The viral oncoprotein latent membrane protein 1 (LMP1) is expressed in almost all EBV-associated malignancies and has profound effects on gene expression. LMP1 acts as a constitutively active tumor necrosis factor receptor and activates multiple forms of the NF-κB family of transcription factors. LMP1 has two domains that both activate NF-κB. In epithelial cells, LMP1 C-terminal activating region 1 (CTAR1) uniquely activates p50/p50-, p50/p52-, and p65-containing complexes while CTAR2 activates canonical p50/p65 complexes. CTAR1 also uniquely upregulates the epidermal growth factor receptor (EGFR). In NPC, NF-κB p50/p50 homodimers and the transactivator Bcl-3 were detected on the EGFR promoter. In this study, the role of NF-κB p50 and Bcl-3 in LMP1-mediated upregulation of EGFR was analyzed. In LMP1-CTAR1-expressing cells, chromatin immunoprecipitation detected p50 and Bcl-3 on the NF-κB consensus sites within the egfr promoter. Transient overexpression of p50 and Bcl-3 increased EGFR expression, confirming the regulation of EGFR by these factors. Treatment with p105/p50 siRNA effectively reduced p105/p50 levels but unexpectedly increased Bcl-3 expression and levels of p50/Bcl-3 complexes, resulting in increased EGFR expression. These data suggest that induction of p50/p50/Bcl-3 complexes by LMP1 CTAR1 mediates LMP1-induced EGFR upregulation and that formation of the p50/p50/Bcl-3 complex is negatively regulated by the p105 precursor. The distinct forms of NF-κB that are induced by LMP1 CTAR1 likely activate distinct cellular genes

    Epstein-Barr Virus Latent Membrane Protein 1 Modulates Distinctive NF- B Pathways through C-Terminus-Activating Region 1 To Regulate Epidermal Growth Factor Receptor Expression

    Get PDF
    Epstein-Barr Virus (EBV) latent membrane protein 1 (LMP1) is required for EBV B-lymphocyte transformation, transforms rodent fibroblasts, and can induce lymphoma and epithelial hyperplasia in transgenic mice. Two domains have been identified within the intracellular carboxy terminus that can activate NF-κB, C-terminus-activating region 1 (CTAR1) and CTAR2, through interactions with tumor necrosis receptor-associated factors (TRAFs). CTAR1 can activate both the canonical and noncanonical NF-κB pathways and has unique effects on cellular gene expression. The epidermal growth factor receptor (EGFR) is highly induced by LMP1-CTAR1 in epithelial cells through activation of a novel NF-κB form containing p50 homodimers and Bcl-3. To further understand the regulation of NF-κB in CTAR1-induced EGFR expression, we evaluated the ability of CTAR1 to induce EGFR in mouse embryonic fibroblasts (MEFs) defective for different NF-κB effectors. CTAR1-mediated EGFR induction required the NF-κB-inducing kinase (NIK) but not the IκB kinase (IKK) complex components that regulate canonical or noncanonical NF-κB pathways. CTAR1-mediated induction of nuclear p50 occurred in IKKβ-, IKKγ-, and NIK-defective MEFs, indicating that this induction is not dependent on the canonical or noncanonical NF-κB pathways. EGFR and nuclear p50 were expressed at high levels in TRAF2−/− fibroblasts and were not induced by CTAR1. In TRAF3−/− MEFs, CTAR1 induced nuclear p50 but did not affect basal levels of STAT3 serine phosphorylation or induce EGFR expression. EGFR was induced by LMP1 in TRAF6−/− MEFs. These findings suggest that this novel NF-κB pathway is differentially regulated by TRAF2 and TRAF3, and that distinct interactions of LMP1 and its effectors regulate LMP1-mediated gene expression

    Epstein-Barr Virus Latent Membrane Protein 2 Effects on Epithelial Acinus Development Reveal Distinct Requirements for the PY and YEEA motifs

    Get PDF
    Epstein-Barr virus (EBV) is a gammaherpesvirus associated with numerous cancers, including the epithelial cancers nasopharyngeal carcinoma (NPC) and gastric carcinoma. The latent membrane protein 2 (LMP2) encoded by EBV is consistently detected in NPC tumors and promotes a malignant phenotype when expressed in epithelial cells by inducing transformation and migration and inhibiting differentiation. Grown in three dimensions (3D) on Matrigel, the nontumorigenic mammary epithelial cell line MCF10A forms hollow, spherical acinar structures that maintain normal glandular features. Expression of oncogenes in these cells allows for the study of multiple aspects of tumor development in a 3D culture system. This study sought to examine the effects of LMP2 on the generation of MCF10A acini. LMP2 expression induced abnormal acini that were large, misshapen, and filled, indicating that LMP2 induced proliferation, impaired cellular polarization, and induced resistance to cell death, leading to luminal filling. Induction of cell death resistance required the PY, immunoreceptor tyrosine activation motif (ITAM), and YEEA signaling domains of LMP2 and activation of the Src and Akt signaling pathways. The PY domain was required for the inhibition of anoikis and also the delayed proliferative arrest of the LMP2-expressing cells. In addition to directly altering acinus formation, expression of LMP2 also induced morphological and protein expression changes consistent with epithelial-mesenchymal transition (EMT) in a manner that required only the YEEA signaling motif of LMP2. These findings indicate that LMP2 has considerable transforming properties that are not evident in standard tissue culture and requires the ability of LMP2A to bind ubiquitin ligases and Src family kinases

    Roles of the ITAM and PY Motifs of Epstein-Barr Virus Latent Membrane Protein 2A in the Inhibition of Epithelial Cell Differentiation and Activation of  -Catenin Signaling

    Get PDF
    Epstein-Barr virus (EBV) latent membrane protein 2A (LMP2A) is important for maintenance of latency in infected B lymphocytes. Through its immunoreceptor tyrosine-based activation motif (ITAM) and PY motifs, LMP2A is able to block B-cell receptor (BCR) signaling, bind BCR-associated kinases, and manipulate the turnover of itself and these kinases via a PY-mediated interaction with the Nedd4 family of ubiquitin ligases. In epithelial cells, LMP2A has been shown to activate the phosphatidylinositol 3′-OH kinase/Akt and β-catenin signaling pathways. In the present study, the biological consequences of LMP2A expression in the normal human foreskin keratinocyte (HFK) cell line were investigated and the importance of the ITAM and PY motifs for LMP2A signaling effects in HFK cells was ascertained. The ITAM was essential for the activation of Akt by LMP2A in HFK cells, while both the ITAM and PY motifs contributed to LMP2A-mediated accumulation and nuclear translocation of the oncoprotein β-catenin. LMP2A inhibited induction of differentiation in an assay conducted with semisolid methylcellulose medium, and the PY motifs were critical for this inhibition. LMP2A is expressed in the EBV-associated epithelial malignancies nasopharyngeal carcinoma and gastric carcinoma, and these data indicate that LMP2A affects cellular processes that likely contribute to carcinogenesis

    Microvesicles and Viral Infection

    Get PDF
    Cells secrete various membrane-enclosed microvesicles from their cell surface (shedding microvesicles) and from internal, endosome-derived membranes (exosomes). Intriguingly, these vesicles have many characteristics in common with enveloped viruses, including biophysical properties, biogenesis, and uptake by cells. Recent discoveries describing the microvesicle-mediated intercellular transfer of functional cellular proteins, RNAs, and mRNAs have revealed additional similarities between viruses and cellular microvesicles. Apparent differences include the complexity of viral entry, temporally regulated viral expression, and self-replication proceeding to infection of new cells. Interestingly, many virally infected cells secrete microvesicles that differ in content from their virion counterparts but may contain various viral proteins and RNAs. For the most part, these particles have not been analyzed for their content or functions during viral infection. However, early studies of microvesicles (L-particles) secreted from herpes simplex virus-infected cells provided the first evidence of microvesicle-mediated intercellular communication. In the case of Epstein-Barr virus, recent evidence suggests that this tumorigenic herpesvirus also utilizes exosomes as a mechanism of cell-to-cell communication through the transfer of signaling competent proteins and functional microRNAs to uninfected cells. This review focuses on aspects of the biology of microvesicles with an emphasis on their potential contributions to viral infection and pathogenesis

    Accumulation of Cytoplasmic  -Catenin and Nuclear Glycogen Synthase Kinase 3  in Epstein-Barr Virus-Infected Cells

    Get PDF
    Epstein-Barr virus (EBV) causes infectious mononucleosis and is associated with cancers in immunocompromised populations. EBV establishes a latent infection and immortalizes and transforms B lymphocytes. Several latent proteins have profound effects on cellular growth, including activation of NF-κB, phosphatidylinositol 3′-OH kinase (PI3K) signaling, and notch signaling. Activation of PI3K can affect the activity of β-catenin, the target of the wnt signaling pathway. Deregulation of β-catenin is associated with a number of malignancies. To determine if β-catenin is regulated by EBV infection, EBV-infected cells were examined for β-catenin levels and localization. β-Catenin was increased in EBV-positive tumor cell lines compared to EBV-negative lines, in EBV-infected Burkitt's lymphoma cell lines, and in EBV-transformed lymphoblastoid cell lines (LCL). In contrast to wnt signaling, EBV consistently induced the accumulation of β-catenin in the cytoplasm but not the nucleus. The β-catenin regulating kinase, glycogen synthase kinase 3β (GSK3β), was shown to be phosphorylated and inactivated in EBV-infected lymphocytes. Inactivated GSK3β was localized to the nucleus of EBV-infected LCL. Neither the cytoplasmic accumulation of β-catenin nor the nuclear inactivation of GSK3β was affected by the inhibition of PI3K signaling. These data indicate that latent infection with EBV has unique effects on β-catenin signaling that are distinct from activation of wnt and independent of its effects on PI3K

    Identification of Epstein-Barr Virus RK-BARF0-Interacting Proteins and Characterization of Expression Pattern

    Get PDF
    The Epstein-Barr virus (EBV) BamHI A transcripts are a family of transcripts that are differentially spliced and can be detected in multiple EBV-associated malignancies. Several of the transcripts may encode proteins. One transcript of interest, RK-BARF0, is proposed to encode a 279-amino-acid protein with a possible endoplasmic reticulum-targeting sequence. In this study, the properties of RK-BARF0 were examined through identification of cellular-interacting proteins through yeast two-hybrid analysis and characterization of its expression in EBV-infected cells and tumors. In addition to the interaction previously identified with cellular Notch, it was determined that RK-BARF0 also bound cellular human I-mfa domain-containing protein (HIC), epithelin, and scramblase. An interaction between RK-BARF0 and Notch or epithelin induced proteasome-dependent degradation of Notch and epithelin but not of HIC or scramblase. Low levels of endogenous Notch expression in EBV-positive cell lines may correlate with RK-BARF0 expression. However, a screen of EBV-positive cell lines and tumors with an affinity-purified α-RK-BARF0 antiserum did not consistently detect RK-BARF0. These data suggest that while RK-BARF0 may have important cellular functions during EBV infection, and while the phenotype of EBV-positive cells suggest its expression, RK-BARF0 levels may be too low to detect

    Transcriptome Changes Induced by Epstein-Barr Virus LMP1 and LMP2A in Transgenic Lymphocytes and Lymphoma

    Get PDF
    ABSTRACTLatent membrane protein 1 (LMP1) and LMP2A affect cell growth in both epithelial cells and lymphocytes. In this study, the effects on cellular gene expression were determined by microarray analysis of transgenic mice expressing LMP1, LMP2A, or both using the immunoglobulin heavy chain promoter and enhancer. Large differential changes were detected, indicating that LMP1 and LMP2A can both potently affect host gene transcription, inducing distinct transcriptional profiles. Seventypercent of the changes detected in LMP1/2A doubly transgenic lymphocytes were also modulated by LMP1 or LMP2A alone. These common and unique expression changes indicate that the combined effects of LMP1 and LMP2A may be additive, synergistic, or inhibitory. Using significant pathway analysis, the expression changes detected in LMP1, LMP2A, and LMP1/2A transgenic B lymphocytes were predicted to commonly target cancer and inflammatory pathways. Additionally, using the correlation coefficient to calculate the regulation of known c-Rel and Stat3 transcriptional targets, both were found to be enhanced in LMP1 lymphocytes and lymphomas, and a selection of Stat3 targets was further evaluated and confirmed using quantitative reverse transcription-PCR (RT-PCR). Analyses of the effects on cell growth and viability revealed that LMP2A transgenic lymphocytes had the greatest enhanced viability in vitro; however, doubly transgenic lymphocytes (LMP1/2A) did not have enhanced survival in culture and these mice were similar to negative littermates. These findings indicate that the combined expression of LMP1 and LMP2A has potentially different biological outcomes than when the two proteins are expressed individually.IMPORTANCEThe Epstein-Barr virus proteins latent membrane protein 1 (LMP1) and LMP2A have potent effects on cell growth. In transgenic mice that express these proteins in B lymphocytes, the cell growth and survival properties are also affected. LMP1 transgenic mice have increased development of lymphoma, and the LMP1 lymphocytes have increased viability in culture. LMP2A transgenic lymphocytes have altered B cell development and enhanced survival. In this study, analysis of the cellular gene expression changes in transgenic LMP1 and LMP2A lymphocytes and LMP1 lymphomas revealed that both transgenes individually and in combination affected pathways important for the development of cancer and inflammation. Importantly, the combined expression of the two proteins had unique effects on cellular expression and cell viability. This is the first study to look at the combined effects of LMP1 and LMP2A on global changes in host gene expression

    Induction of Id1 and Id3 by Latent Membrane Protein 1 of Epstein-Barr Virus and Regulation of p27/Kip and Cyclin-Dependent Kinase 2 in Rodent Fibroblast Transformation

    Get PDF
    Latent membrane protein 1 (LMP1), the Epstein-Barr virus oncoprotein, activates NF-κB, phosphatidylinositol 3-kinase, mitogen-activated protein kinase, and c-Jun N-terminal kinase signaling. To determine global transcriptional changes induced by LMP1 in epithelial cells, genomic analysis of C33A cells stably expressing LMP1 was performed. Relatively few genes were induced by LMP1. Expression of two members of the Id (inhibitor of differentiation) family of proteins, Id1 and Id3, was induced in the presence of LMP1 and confirmed by mRNA and protein in C33A and Rat-1 cells. In Rat-1 foci transformed by LMP1, Id1 protein was also increased. Id proteins are known negative regulators of E-box proteins that positively regulate p16 and potentially other cyclin-dependent kinase inhibitors (cdki's). In LMP1-expressing Rat-1 cells, cdki p27 was specifically downregulated. Decreased p27 was correlated with increased levels of Cdk2 and increased levels of phosphorylated retinoblastoma protein. This study describes new properties of LMP1 that likely contribute to transformation and oncogenesis

    Epstein-Barr Virus LMP1 Modulates Lipid Raft Microdomains and the Vimentin Cytoskeleton for Signal Transduction and Transformation

    Get PDF
    The Epstein-Barr virus (EBV) is an important human pathogen that is associated with multiple cancers. The major oncoprotein of the virus, latent membrane protein 1 (LMP1), is essential for EBV B-cell immortalization and is sufficient to transform rodent fibroblasts. This viral transmembrane protein activates multiple cellular signaling pathways by engaging critical effector molecules and thus acts as a ligand-independent growth factor receptor. LMP1 is thought to signal from internal lipid raft containing membranes; however, the mechanisms through which these events occur remain largely unknown. Lipid rafts are microdomains within membranes that are rich in cholesterol and sphingolipids. Lipid rafts act as organization centers for biological processes, including signal transduction, protein trafficking, and pathogen entry and egress. In this study, the recruitment of key signaling components to lipid raft microdomains by LMP1 was analyzed. LMP1 increased the localization of phosphatidylinositol 3-kinase (PI3K) and its activated downstream target, Akt, to lipid rafts. In addition, mass spectrometry analyses identified elevated vimentin in rafts isolated from LMP1 expressing NPC cells. Disruption of lipid rafts through cholesterol depletion inhibited PI3K localization to membranes and decreased both Akt and ERK activation. Reduction of vimentin levels or disruption of its organization also decreased LMP1-mediated Akt and ERK activation and inhibited transformation of rodent fibroblasts. These findings indicate that LMP1 reorganizes membrane and cytoskeleton microdomains to modulate signal transduction
    corecore