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Cells secrete various membrane-enclosed microvesicles from their cell surface (shedding microvesicles) and
from internal, endosome-derived membranes (exosomes). Intriguingly, these vesicles have many characteris-
tics in common with enveloped viruses, including biophysical properties, biogenesis, and uptake by cells.
Recent discoveries describing the microvesicle-mediated intercellular transfer of functional cellular proteins,
RNAs, and mRNAs have revealed additional similarities between viruses and cellular microvesicles. Apparent
differences include the complexity of viral entry, temporally regulated viral expression, and self-replication
proceeding to infection of new cells. Interestingly, many virally infected cells secrete microvesicles that differ
in content from their virion counterparts but may contain various viral proteins and RNAs. For the most part,
these particles have not been analyzed for their content or functions during viral infection. However, early
studies of microvesicles (L-particles) secreted from herpes simplex virus-infected cells provided the first
evidence of microvesicle-mediated intercellular communication. In the case of Epstein-Barr virus, recent
evidence suggests that this tumorigenic herpesvirus also utilizes exosomes as a mechanism of cell-to-cell
communication through the transfer of signaling competent proteins and functional microRNAs to uninfected
cells. This review focuses on aspects of the biology of microvesicles with an emphasis on their potential
contributions to viral infection and pathogenesis.

The compartmentalization of molecules within the cell into
specialized organelles is necessary to carry out many cellular
processes. These dynamic structures exchange components
within the cell in response to various biological events. Al-
though the importance of organelles within the cell is well
established, it has only recently been appreciated that mem-
brane vesicles containing proteins and RNAs represent a new
class of extracellular organelles named microvesicles (MV),
which exhibit intriguing biological functions (62, 94, 103, 137).
It is clear that some viruses utilize vesicle secretion pathways
during infection. Therefore, understanding the interplay be-
tween viruses and microvesicles may contribute to the devel-
opment of novel therapeutics and vaccines to control viral
infections.

Biological fluids surrounding the extracellular space of cells
and tissues contain various types of membrane-enclosed mi-
crovesicles. The variety of vesicles released from cells and the
methods used to isolate them have led to confusion in the
nomenclature. For the purpose of this review, all extracellular
membrane vesicles released from cells will be termed mi-
crovesicles. This class of organelles currently includes exo-
somes, shedding microvesicles (SM) and apoptotic bodies
(AB), which have been grouped based on biophysical proper-
ties (Table 1). Depending on their cellular origin, microvesicles
contain specific molecules and have several virus-like charac-
teristics, including their physical properties and their ability to

transport biologically active macromolecules between cells.
Their functional properties include the modulation of angio-
genesis (69, 77), cell proliferation (68, 138), cell invasion (59,
66, 106), gene regulation (68, 125, 157), and immune regula-
tion (19, 33, 129).

EXOSOMES

The best-characterized microvesicles are exosomes, which
are 40- to 100-nm endosome-derived vesicles that exhibit a
uniform cup-like morphology when visualized by electron mi-
croscopy (following negative staining) or as round vesicles
when observed by transmission electron microscopy (TEM)
and cryo-electron microscopy (cryo-EM) (36, 155) (Table 1).
Exosomes are essentially intraluminal vesicles (ILVs) released
from cells that were generated by inward budding of endo-
somal multivesicular bodies (MVBs) (143). The ILVs of MVBs
can be targeted for degradation through lysosomal pathways,
or the MVB may traffic to the plasma membrane, where the
ILVs are released into the extracellular space by fusion of the
MVB membrane with the plasma membrane (Fig. 1). Interest-
ingly, exosomes are the only known secreted cellular vesicles
that originate from internal membranes. Exosomes have been
found in many biological fluids, including urine (37, 116, 122),
plasma (117), ascites (8), saliva (111), breast milk (3), bro-
choalveolar lavage liquid (124), and amniotic fluid (85), mak-
ing them ideal candidates for diagnostic biomarkers.

The mechanism that determines the specific fate of ILVs
remains unknown; however, it is well established that the en-
dosomal sorting complex required for transport (ESCRT) ma-
chinery is important for the sorting of ubiquitinated cargo into
ILVs and for ILV formation (167). Therefore, it is not surpris-
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ing that exosomes are enriched in ESCRT components such as
TSG101 and Alix (Fig. 2) (103). However, the exact function of
ESCRT proteins in exosome production is unclear. Depletion
of an ESCRT-0 component, Hrs, that is important for cargo
transport to MVBs, decreased exosome secretion in den-
dritic cells stimulated with ovalbumin and calcium iono-
phore (149). However, in oligodendrocytes, exosome secre-
tion occurs through an ESCRT-independent mechanism
involving the lipid ceramide (155). Ceramide has been pro-
posed to create clustering of membrane microdomains and
induce membrane curvature, promoting invaginations in lipid

bilayers. ILV formation and exosome release are reduced
when neutral sphingomyelinase, the enzyme required to make
ceramide, is inhibited (155). Exosomes are also enriched for
other lipid components, including sphingomyelin, cholesterol,
and the glycolipid GM3 (41, 170) and lipid raft resident pro-
teins, including caveolins and flotillins (97, 141) (Fig. 2). The
distinct markers suggest that, dependent on specific cargo or
cellular stimulation, separate pathways contribute to MVB for-
mation and exosome production. Multiple stimuli and different
cellular environments have been shown to induce vesiculation,
including differentiation (47), activation (64), senescence (95),

TABLE 1. Properties of microvesicles

Parameter
Properties of:

Exosomes Shedding microvesicles Apoptotic bodies

Size 40–100 nm 100–1,000 nm 1–5 �M

Density 1.10–1.19 g/ml 1.16 g/ml 1.24–1.28 g/ml

Shape Homogeneous Variable Variable

Isolation Differential centrifugation Differential centrifugation Established protocol lacking
100,000–200,000 g 10,000–20,000 g Sediment at 1,200 g, 10,000 g, and 100,000 g
Sucrose gradient Immunoisolation
Immunoisolation

Markers Tetraspanins (CD63, CD9), ALIX, TSG101 Integrins, MMPs,a tissue factor DNA content, histones

Reference(s) 62, 126 32, 35 153

a MMPs, matrix metalloproteinases.

FIG. 1. Microvesicle biogenesis pathways. (A) Endocytosed proteins on the plasma membrane traffic to early endosomes where they can be
sorted back to the plasma membrane or to multivesicular bodies (MVBs). MVBs contain intraluminal vesicles (ILVs) that are generated by
budding from the limiting membrane of endosomes. Distinct MVB populations exist, a degradative MVB that leads to lysosomal destruction of
MVB content or an exocytic pathway that traffics to the plasma membrane and, following membrane fusion, releases ILVs from the cell in the form
of exosomes. Vesicles can also actively be released directly from the plasma membrane requiring a budding mechanism. These vesicles have been
termed shedding microvesicles. ER, endoplasmic reticulum. (B) Dying or apoptotic cells release shedding microvesicles in the early stages of
apoptosis and larger apoptotic bodies at later times that contain nuclear and cytoplasmic remnants of the degrading cell.
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stress (93), stimulation with cytokines (139), exposure to ATP
(17), cell death (61), hypoxia (119), transformation (45), ex-
pression of oncogenes (6, 27, 78), and viral infection (11, 88,
102, 140, 162). Thus, in addition to the two defined MVB
populations, one destined for a lysosomal degradation and the
other for exosomal secretion, it is likely that additional MVB
populations produce exosomes with distinct compositions.

Tetraspanins, which are heavily enriched in exosomes, have
been proposed to have a major function in exosome formation
(103) (Fig. 2). The human genome contains at least 32 tetra-
spanins. These proteins have four transmembrane domains
and conserved motifs, including a CCG motif and two disulfide
bonds within the second extracellular loop (65). Tetraspanins
form complexes in membrane microdomains termed tetraspa-
nin-enriched membrane domains (TEMs) through interactions
between themselves and other transmembrane proteins (172).
The tetraspanin-interacting complexes are often referred to as
the tetraspanin web. The tetraspanin web may be important for
trafficking of exosome components to the ILV of MVBs and
therefore exosome biogenesis. In support of this hypothesis,
expression of the tetraspanins, CD9 or CD82, induced exo-
somal sorting and secretion of �-catenin from cells (29). Ad-
ditionally, tetraspanins CD63 and CD81 have been shown to
bind components of the ESCRT machinery (52).

Rabs, small GTPases which participate in vesicle docking
and membrane fusion events, are also commonly detected in
exosomes (109, 153). Rabs form complexes with proteins in-
volved in membrane trafficking through the endocytic system
and are routinely used as markers of various endocytic com-

partments. For instance, Rab4 localizes to the early/recycling
endosomes, Rab5 to the plasma membrane and early endo-
somes, and Rab7 to late endosomes (142). As expected from
their role in vesicular trafficking, Rabs are important for exo-
some formation and release from cells. It has recently been
shown that inhibition of Rab35 function with a dominant-
negative construct induces accumulation of endosomal vesicles
and a decrease in exosome release from cells (73). In the same
study, Rab35 knockdown slowed the movement of vesicles to
the plasma membrane, suggesting that Rab35 is important for
MVB movement to the plasma membrane. Using an RNA
interference (RNAi) screen, Ostrowski et al. discovered that
Rab27a and Rab27b are important for MVB docking at the
plasma membrane and therefore exosome secretion from
HeLa cells (118).

There currently is no direct evidence that exosomes can also
bud directly from the plasma membrane, but domains within
the plasma membrane have been shown to be enriched in
exosomal proteins, lipids, and carbohydrates and are termed
endosome-like domains (48). These domains may be a mech-
anism for trafficking of cargo from the plasma membrane back
to MVBs. Alternatively, these domains may function in vesicle
budding from the plasma membrane similarly to what has been
described for certain enveloped viruses (74). Additional sup-
port that exosomes or exosome-like vesicles may bud from the
plasma membrane is the observation that vesicles with the
typical size of exosomes (50 to 100 nm) have been found
budding from the plasma membrane (20). However, since exo-

FIG. 2. Molecules found in exosomes. Proteomic and biochemical analysis of purified exosomes have identified many specific proteins and
RNAs present within these structures that are often in different abundances than those of their intracellular counterparts. Molecules presented
here have been grouped based on functions or protein classes. vmiRNA, viral miRNA; PK, protein kinase; MHCI and MHCII, MHC class I and
II, respectively; PGK1, phosphoglycerate kinase 1; MUC1, mucin 1; ARF1, ADP-ribosylation factor 1.
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somes by definition are derived from ILVs of MVBs, these
vesicles are a distinct population of vesicles secreted from cells.

SHEDDING MICROVESICLES

Shedding microvesicles (SMVs) are an additional class of
microvesicles that are released from the plasma membrane
instead of internal membranes and contain different protein
components (Fig. 1). SMVs are larger and more heteroge-
neous in size than exosomes, ranging from 100 nm to 1 um (62,
64) (Table 1). The release of SMVs from the cell surface is a
regulated process that is induced by cellular stimulus-like in-
fection, activation, transformation, and stress. SMVs have
been found to contain proteins, RNAs, and microRNAs
(miRNAs) (25). Like exosomes, SMVs contain cholesterol-rich
microdomains, or lipid rafts, and common lipid raft-associated
proteins, such as flotillin-1 and tissue factor (42). SMVs may
also contain specific integrins, cytokines, chemokines, metallo-
proteinases, and higher levels of phosphatidyl serine (PS) ex-
posed on the outer-membrane leaflet (6, 43, 55, 94, 123, 135).
Less is known about SMV vesiculation than exosome biogen-
esis; however, it is understood that the enzymes involved in this
process, at least for vesiculation in platelet cells, include
aminophospholipid translocase, scramblase, floppase, and cal-
pain (121). In microglia cells, the enzyme acidic sphingomyelin-
ase, which is distinct from neutral sphingomyelinase that is
important for exosome formation, is essential for SMV release
following ATP stimulation (17); Bianco et al. proposed that
ATP released from dying cells acts as a stimulus for microglia
to secrete SMVs containing proinflammatory cytokines. In ad-
dition to these enzymes, it is likely that clustering of SMV
cargo into membrane microdomains drives the SMV budding
process, as the addition of membrane targeting motifs to highly
oligomeric cytoplasmic proteins was sufficient to induce their
secretion from the plasma membrane into SMVs (136).

APOPTOTIC BODIES

Apoptotic bodies (AB), which are released from cells during
the later stages of programmed cell death, are another type of
membrane-enclosed vesicle. AB are large, ranging from 1 um
to 5 um in size, and contain exposed PS and many cellular
remnants, including fragmented DNA and cellular organelles
(72, 153) (Table 1). AB can also transfer cargo, such as onco-
genes and DNA, between cells and have been shown to be
important in antigen presentation and immunosuppression
(12, 14, 34, 67). Compared to their MV counterparts, AB have
been understudied, as an effective isolation procedure is lack-
ing and they are the by-product of cell death (62). Further
study is warranted, as it is likely that AB participate in impor-
tant cellular communication events that may be distinct from
those described for exosomes or SMVs.

FUNCTIONS OF MICROVESICLES

The discovery of MV dates back to 1967, when Peter Wolf
first described the generation of dust particulates by activated
blood platelets that were later termed exosomes (156, 168). An
ever-increasing number of recent studies support the role of
microvesicles in a novel mechanism of cell-to-cell communica-

tion through the transfer of soluble and insoluble factors (5,
110, 120, 138, 157). Much of our current understanding of the
functions of microvesicles comes from the study of various
cancers, for which the process of tumorigenesis leads to an
increase in microvesicle secretion (127). Cancer patients have
an elevated number of MV circulating in their blood that
correlates with a poor prognosis (90). Microvesicles have been
implicated in multiple aspects of cancer biology and disease
progression, including transformation, (9) tumor growth
(84, 138), tumor microenvironment remodeling (151), inva-
sion (66), angiogenesis (77), cell migration (119) metastasis
(70), immune evasion and response (154), and differentiation
(158, 165). Microvesicles also have functions in antigen pre-
sentation (128), neuronal communication (49), coagulation
(13, 42), pathogen spread (50, 75, 166), sperm maturation
(145), and pregnancy (150). The process of vesiculation may
also participate in cellular waste removal for unwanted pro-
teins as a cellular defense response to regulate overactive sig-
naling complexes, particularly those induced by oncogenic pro-
teins (1, 29). Although there are considerable data supporting
the role of microvesicles in various pathological processes,
there are a limited number of studies documenting their func-
tion in vivo.

Microvesicles exert their biological functions through inter-
actions with recipient cells or the transfer of molecular com-
ponents following membrane fusion events. One unique fea-
ture of microvesicles is the ability to transfer multiple effector
molecules at once and shuttle proteins between cells, which
would otherwise not be possible through alternative secretion
mechanisms like those used by soluble growth factors (5, 110,
138). For instance, microvesicles can contain and transfer
transmembrane proteins, insoluble proteins, and proteins that
do not possess a classical signal sequence for exocytosis (5,
110). Microvesicles can also transfer activated receptors that
are signaling competent following target cell uptake (5). This
type of transfer may contribute to a more sustained cellular
response.

In addition to protein cargo, microvesicles may contain both
mRNA and miRNAs (110, 120, 138, 157). A seminal paper in
the field demonstrated the functional transfer of mRNA
through exosomes to cells from which new protein products
were produced (157). This was the first demonstration that
exosomes could transfer functional RNA to recipient cells and
thus participate in a novel mechanism of cell-to-cell commu-
nication through epigenetic reprogramming of target cells. In
the same study, a specific miRNA profile within the exosomes,
differing from that of the intracellular levels, was also iden-
tified. Subsequent studies have shown that the transferred
miRNAs were actually capable of silencing targets in recip-
ient cells.

Very little is known about the mechanisms of microvesicle-
mediated cargo transfer. It has been proposed that direct con-
tact with target cell surface receptors, cleavage of surface pro-
teins, fusion with the cell membrane, and endocytosis may all
contribute to entry and effects on recipient cells (Fig. 3) (25,
76). Interestingly, an ingenuity pathway analysis (IPA) of MV
cargo revealed that many of the molecules found in MV have
been implicated in virus binding and entry (62). As many
viruses enter through endocytic routes, MV may also enter
through endocytic pathways (46, 112). The diversity of MV
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populations and components suggests that MV enter cells
through numerous mechanisms similar to the multiple path-
ways identified for viruses (101).

MICROVESICLES AND VIRUS INFECTION

Microvesicles produced during many types of viral infection
were identified in early studies, and some of their properties
have been documented. For example, L-particles produced in
herpesvirus infection were shown to enhance viral replication,
while the high levels of secretion of hepatitis B virus (HBV)
surface antigens were thought to function as immune decoys.
The further study of subviral particles and cellular exosomes
will continue to clarify the effects of their production on viral
pathogenesis.

Retroviruses. The similarity between microvesicle and en-
veloped virus biogenesis and entry into cells is thought-pro-
voking and has led to the Trojan exosome hypothesis of HIV
assembly and cell-cell spread (57). This theory postulates that
retroviruses have evolved to utilize a preexisting host exosome
biogenesis pathway for the formation of infectious virus and
can also utilize a nonviral mode of exosome uptake that is
independent of the viral Env protein. However, recent data
unequivocally shows that HIV buds from the plasma mem-
brane and not internal MVB membranes (18). The virus does
recruit components of the host ESCRT machinery to the sight
of budding and possesses some similarities to shedding mi-
crovesicles. Other enveloped viruses also utilize the cellular
machinery of vesiculation for their formation and cell-to-cell
spread (63, 80, 131). Viruses that interact with or require the
ESCRT pathway for release include rhabdoviruses, filoviruses,
arenaviruses, paramyxoviruses, herpesviruses, HBV, and hep-
atitis C virus (HCV) (30, 63, 113). Additional evidence that
HIV budding is distinct from exosome formation is that inhi-
bition of ceramide synthesis, which blocks exosome shedding,
does not affect HIV budding, although a decrease in infectivity
was observed (21, 75). However, HIV may utilize raft microdo-

mains rich in tetraspanins for virus assembly as Gag proteins
from both HIV and human T cell lymphotropic virus type 1
(HTLV-1) interact with tetraspanins (60, 104, 105). CD81 and
CD63 participate in HIV budding, cell-to-cell spread, and in-
fectivity, demonstrating the overall importance of this protein
family in retrovirus biology (60, 75, 79, 134). The investigation
of virus budding and cellular microvesicle biogenesis will likely
provide additional insight into these processes and may iden-
tify novel targets to inhibit microvesicle or virus release from
cells.

The study of microvesicles secreted during virus infection is
complicated by the similar size and density of microvesicles
and infectious virus particles, making it challenging to separate
the two populations (Table 2). HIV particles have biophysical
properties almost identical to those of the exosomes secreted
from the same cells, including the �100-nm size, a buoyant
density of 1.13 to 1.21 g/liter, and functional effects on immune
cell activation (26, 153, 164, 170) (Table 2). In early studies, it
was difficult to purify HIV particles free of exosomes compli-
cating the analysis of the composition and function of the
distinct types of particles (15, 56, 115). Recent purification
strategies utilizing iodixanol density gradients and immuno-
affinity isolation have successfully separated purified HIV viri-
ons free of exosomes (26, 31).

The potential functions of exosomes secreted during HIV
infection are just beginning to emerge. Exosomes released
from infected cells have been shown to contain coreceptors for
HIV which can enhance virus entry into cells (99, 132). Ex-
pression of the viral Nef protein alters the endosomal system
by increasing the number of endosomes, lysosomes, and mul-
tivesicular bodies (MVBs) (38, 100, 133, 144). HIV Nef in-
duces massive vesicle secretion from infected and noninfected
cells and can be detected in the serum of infected individuals
(4, 114). Recently, Nef has been found in exosomes secreted
from cells, and these Nef-containing exosomes induced apop-
tosis in CD4� T cells (24, 96). Therefore, exosomal Nef may

FIG. 3. Potential mechanisms of microvesicle-mediated intercellular communication. Proteins present on the microvesicle surface can bind to
receptors on the target cell membrane, activating signaling pathways within that cell (Receptor binding). Microvesicles may fuse with target cell
membranes and release their contents at the plasma membrane (Fusion) or internal membranes following uptake into endocytic vesicles
(Endocytosis). Deposited cargo can activate signaling pathways, silence target gene expression, and produce new proteins following transcription
of mRNA. Microvesicles may also interact with molecules present within endocytic vesicles that induce signal transduction cascades in the absence
of vesicle fusion. Proteases located in the extracellular space may cleave proteins exposed on the microvesicle surface. The potential ligands
generated could bind to cell surface receptors on the target cell and initiate signaling events (Cleavage).
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contribute to HIV pathogenesis by facilitating the depletion
of CD4� T cells. Nef has also been shown to be transported
from infected macrophages to neighboring uninfected B
cells through a contact-dependent mechanism requiring nano-
tubes. This transfer impaired antibody class switching and hu-
moral immunity (171). The transfer of Nef or other viral com-
ponents through intracellular and extracellular vesicles may
represent an important mechanism for immune evasion by
viruses.

In a classic example of host-pathogen relationships, it also
appears that the host cell machinery utilizes vesicle secretion
for its defense against viral infection. Secreted vesicles may
present viral antigens and activate immune cells during a cel-
lular response (2, 19, 91, 128, 154, 162). Microvesicles may also
contribute to the innate immune defense mechanism. For ex-
ample, APOBEC3G, a cytidine deaminase that is part of the
cellular antiviral system against retroviruses, can be packaged
and transferred to adjacent cells through exosomes to inhibit
HIV replication (89). The contribution of exosomes to the
innate immune response is also suggested by the finding that
exosomes released from airway epithelial cells neutralize in-
fluenza virus (88).

Hepatitis C virus. Three distinct types of particles have been
shown to be secreted from HCV-infected cells in vitro (54).
The most abundant membrane-enclosed vesicle released from
HCV-infected cells is intact virus, which is an �60-nm popu-
lation with a membrane bilayer, an internal capsid structure,
and high infectivity (Table 2). An �45-nm population does not
possess a lipid bilayer and has a higher density and a lower
infectivity-to-HCV RNA ratio. Larger vesicles (�100 nm) that
resembled cellular exosomes observed by cryo-EM were also
secreted during infection but had barely detectable infectivity.
Interestingly, HCV structural proteins are detected in exo-
somes circulating in HCV-infected patients, suggesting a po-
tential contribution of these vesicles to viral pathogenesis
(102). However, the composition and properties of these mi-
crovesicles released during HCV infection remain to be eluci-
dated.

Hepatitis B virus and poxviruses. Since almost all cell types
are capable of vesiculation, it would not be surprising if mi-
crovesicles are secreted from all cells during active viral infec-
tion. HBV infection results in the massive release of noninfec-
tious subviral particles containing the viral surface antigens
(28). These particles can be spherical, resembling exosomes,
or filamentous and similar in size to larger shedding mi-

crovesicles. Subviral particles are very abundant in patient se-
rum and can reach a 10,000-fold-higher concentration than
that of infectious virus particles (53). Again, the composition
and function of these particles have been largely unexplored
yet have been hypothesized to function in immune evasion
strategies. It has been suggested that subviral particles distract
the immune system from the few infectious particles. Simi-
larly, cells infected with vaccinia virus also produce particles
that contain viral glycoproteins but lack other viral cargo
(140). Although it is possible that the production of these
vesicles by infected cells is a by-product of cell lysis and
virion assembly, the many proposed functions and identified
properties of secreted microvesicles suggest that they likely
contribute to the pathogenesis of both hepadnavirus and
poxvirus infections.

Herpes simplex virus. Herpes simplex virus (HSV)-infected
cells also secrete microvesicles, originally called L-particles,
that are noninfectious as they lack the viral capsid and DNA
(98, 108, 130, 148). These particles contain viral tegument
proteins and glycoproteins and, similar to HSV virions, likely
contain many cellular factors (98, 108, 130). Interestingly, HSV
L-particles are comparable in size to exosomes, are formed on
internal membranes, and are capable of delivering functional
cargo to uninfected cells (40, 107). Since the purpose of some
of the tegument proteins is to prime the cell for infection (81,
86), at least one function of HSV L-particles could be in en-
hancing viral infectivity or replication (107). This is supported
by the observation that L-particles enhance the ability of trans-
fected viral DNA to form infectious foci or plaques (40). HSV
may also utilize the exosomal pathway for immune evasion.
Expression of HSV glycoprotein B (gB) in a human melanoma
cell line, Mel JuSo, altered the major histocompatibility
complex (MHC) class II antigen-processing machinery by
shuttling HLA-DR to the exosomal secretion pathway in-
stead of the cell surface (152). Additionally, extracellular
vesicles secreted from these cells are rich in the tetraspanin
CD63, a late endosome maker and exosome component, and
contained gB in a complex with HLA-DR. Based on our
current knowledge of microvesicle functions, it is likely that
HSV L-particles contribute to viral pathogenesis within the
infected host by enhancing virion infectivity and providing
immune evasion functions.

Epstein-Barr virus. The study of Epstein-Barr virus (EBV)
microvesicles has also expanded our understanding of the cell
biology of microvesicles, and additional potential functional

TABLE 2. Particles released from virus infected cells

Particle type and characteristics
Reference(s)

Virion Size (nm) Density (g/ml) Microvesicle Size (nm) Density (g/ml)

HIV �100 1.13–1.21 HIV exosomes �100 1.13–1.21 26
HCV 35–100 1.10–1.14 HCV exosomes �100 �1.08 54
HBV 44 1.20–1.28 HBV subviral particles

Quasi-spherical 22 1.20 82
Filaments up to 1,200 22

HSV 150–200 1.07–1.26 HSV L particles 80–200 10, 146, 147
HCMV 150–200 1.18–1.22 HCMV exosomes 20–50 1.08–1.17 16, 162, 169
EBV 150–200 �1.20 EBV exosomes 40–100 1.08–1.22 87, 159

EBV shedding microvesicles �100 128, 160
Vaccinia virus 360 by 270 by 250 1.13–1.21 Vaccinia virus microvesicles 50–200 1.25 39, 140
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properties have been identified. The latent membrane protein
1 (LMP1), the major oncoprotein of the virus, is required for
EBV-induced B cell immortalization and is sufficient to trans-
form rodent fibroblasts in vitro (83, 163). The secretion of this
protein into exosomes was first described for transformed B
cells (51) and later for epithelial cells grown in culture (27).
LMP1 is also detected abundantly in the serum of patients with
nasopharyngeal carcinoma (NPC) and is present in exosomes
isolated from the serum of mice carrying NPC tumors (71,
110). The sorting of LMP1 into exosomes is not completely
understood; however, a recent report indicated that the inter-
action of LMP1 with the tetraspanin CD63 was important for
LMP1 trafficking to MVBs and may participate in LMP1 exo-
somal secretion (161). Interestingly, the localization of LMP1
to lipid rafts or ubiquitination, two proposed mechanisms for
MVB targeting, did not appear to be important for LMP1
exosome-mediated secretion. Immunoelectron microscopy of
EBV-infected cells has also detected LMP1 in vesicles budding
from the plasma membrane (160), and LMP1 is present in
distinct fractions isolated from extracellular media, consistent
with its presence in other microvesicle populations in addition
to exosomes (87). Further study is needed to understand
LMP1 intracellular trafficking and its secretion into potentially
separate microvesicle populations.

Significantly, the secretion of LMP1, a potent signal trans-
duction protein, was shown to affect uninfected recipient target
cells. This was first suggested when purified LMP1 protein and
exosomes secreted from B cells containing LMP1 were shown
to inhibit T cell proliferation and NK cytotoxicity (44). More
recently, exosomes produced by EBV-infected NPC cells were
shown to contain an immune modulator protein, galectin 9,
that contributed to the observed immunosuppressive effects
(87, 92). The secretion of immunosuppressive exosomes con-
taining LMP1 and other virally induced proteins from EBV-
infected cells is likely important in viral pathogenesis and may
also contribute to tumor progression. Interestingly, EBV-in-
fected NPC tumors are heavily infiltrated with T cells that are
unable to clear the tumor (23). Exosomes may therefore rep-
resent part of an immune evasion strategy utilized by the virus
and tumor.

Our recent studies of tumor cell-derived exosomes provide
additional evidence for the functional delivery of LMP1 to
target cells (110). LMP1 was found to be abundantly secreted
from NPC cells infected with EBV, and LMP1 expression
alone was sufficient to induce its secretion from a noninfected
epithelial cell line. The uptake of LMP1-containing exosomes
by uninfected target cells induced growth-stimulating signaling
pathways in recipient cells. These findings suggest that through
exosomal transfer of LMP1, EBV can manipulate the growth
characteristics of neighboring cells. This may be especially im-
portant in the pathogenesis of NPC, since not all NPC cells
express detectable levels of LMP1. Release of LMP1 from a
rare expressing cell could have wide-ranging effects on the
entire cell population. Intriguingly, LMP1 expression also al-
tered the composition of exosomes and increased the levels in
exosomes of two important signaling molecules frequently ac-
tivated in cancers, phosphatidylinositol 3-kinase (PI3K) and
the epidermal growth factor receptor (EGFR). Similar results
were also described for the increased secretion of fibroblast
growth factor 2 (FGF2) from LMP1-expressing cells (27).

LMP1 may modulate the selective sorting of proteins into the
exosomal pathway, suggesting that EBV manipulates these
pathways for intercellular communication.

In addition to LMP1, virally encoded miRNAs that can be
transferred to uninfected recipient cells have also been shown
to be contained in exosomes secreted from EBV-infected cells
(58, 110, 120). The delivery of these miRNAs specifically si-
lenced known miRNA targets, providing the first evidence of
functional delivery of miRNAs through exosomes (120). Ad-
ditionally, uninfected B cells isolated from patients harboring
EBV contained viral miRNAs, suggesting that miRNA transfer
can occur in vivo. We have also shown that NPC exosomes are
enriched for certain viral miRNAs relative to their intracellular
levels (110). This suggests a selective and specific secretion of
miRNAs from infected cells that may contribute to their
potential functions outside the infected cell. Evidence for
functional miRNA delivery in vivo is currently lacking; how-
ever, a recent study utilized neuronal targeted exosomes to
deliver small interfering RNA (siRNA) to achieve specific
target gene knockdown (7). When these findings are taken
together, it appears as though EBV utilizes the exosome
pathway for the selective secretion of viral and cellular pro-
teins and miRNAs that likely participate in cell-cell com-
munication in the absence of virus production and poten-
tially modulate cell function.

CONCLUSIONS

The field of virology has contributed immensely to our un-
derstanding of microvesicle biology. The study of enveloped
viruses is mature compared to the microvesicle field. Some of
the seminal discoveries in the area of microvesicle research
were made first through the study of virally infected cells.
These include the function of microvesicles as immune activa-
tors (2, 128), in intracellular communication (107), in immune
suppression (44), and for the transfer of functional miRNAs
(120). It is likely that techniques previously and currently being
developed to study viruses will continue to advance the study of
microvesicles. Additionally, our understanding of the complex
process of viral entry may elucidate requirements that affect
the specificity of exosome uptake. Moreover, since many virally
infected cells secrete microvesicles in addition to infectious
virus particles, the further study of virally modified mi-
crovesicles will clarify their role in infection.

The microvesicle transfer of viral and cellular factors, par-
ticularly in the case of persistent infections such as those of the
herpesviruses, would enable the manipulation of neighboring
uninfected cells, which could be beneficial both to the virus and
to the host, as this could potentially reduce viral replication to
a minimum. Microvesicle-mediated communication would
allow the virus to respond to or control the cellular microen-
vironment in the absence of viral replication. The current
findings suggest that viruses utilize the cellular vesiculation
pathway for virus budding/assembly, immune evasion, and in-
tercellular communication. Our current mechanistic under-
standing of microvesicle biology and function, especially in
regard to virus infection, is in its infancy. However, the obvi-
ously broad biological and medical implications of mi-
crovesicles make them a significant and exciting area of re-
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search with potential high impact on our understanding of
pathogenesis within the infected individual.
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