4,855 research outputs found

    Influence of transcutaneous vagus nerve stimulation on cardiac vagal activity: Not different from sham stimulation and no effect of stimulation intensity

    Get PDF
    © 2019 Borges et al. The present study investigated the effects of transcutaneous vagus nerve stimulation on cardiac vagal activity, the activity of the vagus nerve regulating cardiac functioning. We applied stimulation on the left cymba conchae and tested the effects of different stimulation intensities on a vagally-mediated heart rate variability parameter (i.e., the root mean square of successive differences) as well as on subjective ratings of strength of perceived stimulation intensity and unpleasantness due to the stimulation. Three experiments (within-subject designs, M = 61 healthy participants each) were carried out: In Experiment 1, to choose one fixed stimulation intensity for the subsequent studies, we compared three preset stimulation intensities (i.e., 0.5, 1.0 and 1.5 mA) with each other. In Experiment 2, we compared the set stimulation method with the free stimulation method, in which the participants were instructed to freely choose an intensity. In Experiment 3, to control for placebo effects, we compared both methods (i.e., set stimulation vs. free stimulation) with their respective sham stimulations. In the three experiments, an increase of cardiac vagal activity was found from resting to the stimulation phases. However, this increase in cardiac vagal activity was not dependent on stimulation intensity (Experiment 1), the method used to stimulate (i.e., set vs. free; Experiment 2), or whether stimulation was active or sham (Experiment 3). This pattern of results was solidly supported by Bayesian estimations. On the subjective level, higher stimulation intensities were perceived as significantly stronger and a stronger stimulation was generally also perceived as more unpleasant. The results suggest that cardiac vagal activity may be similarly influenced by afferent vagal stimuli triggered by active and sham stimulation with different stimulation intensities. Potential explanations for these findings and its implications for future research with tVNS are discussed

    The referee's challenge: a threshold process model for decision making in sport games

    Get PDF
    Judgment and decision making in sporting officials is a challenging task that involves the use of context. Although process models of decision making describe decision contexts, none of the existing models explains when sports officials use rule-driven decision making, or game management. The basic idea of our work is that referees use a subjective threshold to apply game management, which may explain this decision behavior. We propose a new dynamic threshold model that is based on concepts derived from Decision Field Theory (Busemeyer & Townsend, 1993). The model includes two thresholds of game management (high/low) and two contact situations (foul/no foul) as approaching one of these thresholds. Using the example of soccer refereeing, we argue that if the game hits a subjective threshold of aggressive play, then the referee shifts from applying the rules to managing the game. This new approach changes the scientific discussion from one focused on what referees should decide in one situation or the other, to a dynamic model that explains the basic psychological mechanism underlying the referee’s change in behavior during the game, both at the intra-individual as well as inter-individual leve

    Impact of a theoretically based sex education programme (SHARE) delivered by teachers on NHS registered conceptions and terminations: final results of cluster randomised trial

    Get PDF
    <b>Objective</b>: To assess the impact of a theoretically based sex education programme (SHARE) delivered by teachers compared with conventional education in terms of conceptions and terminations registered by the NHS. Design Follow-up of cluster randomised trial 4.5 years after intervention. <b>Setting</b>: NHS records of women who had attended 25 secondary schools in east Scotland. <b>Participants</b>: 4196 women (99.5% of those eligible). <b>Intervention</b>: SHARE programme (intervention group) v existing sex education (control group). <b>Main outcome measure</b>: NHS recorded conceptions and terminations for the achieved sample linked at age 20. <b>Results</b>: In an "intention to treat" analysis there were no significant differences between the groups in registered conceptions per 1000 pupils (300 SHARE v 274 control; difference 26, 95% confidence interval –33 to 86) and terminations per 1000 pupils (127 v 112; difference 15, –13 to 42) between ages 16 and 20. <b>Conclusions</b>: This specially designed sex education programme did not reduce conceptions or terminations by age 20 compared with conventional provision. The lack of effect was not due to quality of delivery. Enhancing teacher led school sex education beyond conventional provision in eastern Scotland is unlikely to reduce terminations in teenagers

    Transcutaneous Vagus Nerve Stimulation May Enhance Only Specific Aspects of the Core Executive Functions. A Randomized Crossover Trial

    Get PDF
    Background: Individuals are able to perform goal-directed behaviors thanks to executive functions. According to the neurovisceral integration model, executive functions are upregulated by brain areas such as the prefrontal and cingulate cortices, which are also crucially involved in controlling cardiac vagal activity. An array of neuroimaging studies already showed that these same brain areas are activated by transcutaneous vagus nerve stimulation (tVNS). Despite evidence towards effects of tVNS on specific executive functions such as inhibitory control, there have been no studies investigating what type of inhibition is improved by tVNS by systematically addressing them within the same experiment. Furthermore, the effect of tVNS on another core executive function, cognitive flexibility, has not yet been investigated. Objective: We investigated the effects of tVNS on core executive functions such as inhibitory control and cognitive flexibility. Methods: Thirty-two participants (nine women, Mage = 23.17) took part in this study. Vagally-mediated heart rate variability parameters (root mean square of successive differences, RMSSD, and high frequency, HF) were measured while participants performed four different cognitive tasks that mainly rely on different aspects of both the aforementioned executive functions. Results: Despite clear conflict effects in the four tasks, only performance on the task used to measure set-shifting paradigm was improved by tVNS, with switch costs being lower during tVNS than during sham stimulation. Furthermore, HF increased during each of the cognitive flexibility tasks, although HF during tVNS did not differ from HF during sham stimulation. Conclusion: The results indicate for the first time a) that tVNS can increase cognitive flexibility in a set-shifting paradigm, and b) that tVNS may exert a stronger effect on cognitive flexibility than inhibition. The present study provides only partial evidence for the neurovisceral integration model. Future studies should address further paradigms that demand cognitive flexibility, thus investigating this new hypothesis on the specificity of the tVNS effects on cognitive flexibility

    Comparison of regional blood flow values measured by radioactive and fluorescent microspheres

    Get PDF
    Fluorescent microspheres (FM) have become an attractive alternative to radioactive microspheres (RM) for the measurement of regional blood flow (RBF). The aim of the present study was to investigate the comparability of both methods by measuring RBF with FM and RM. Eight anaesthetised pigs received simultaneous, left atrial injections of FM and RM with a diameter of 15 mum at six different time points. Blood reference samples were collected from the descending aorta. RBF was determined in tissue samples of the myocardium, spleen and kidneys of all 8 animals. After radioactivity of the tissue samples was determined, the samples were processed automatically for measuring fluorescence using a recently developed filter device (SPU). RBF was calculated with both the isotope and spectrometric data of both methods for each sample resulting in a total of 10,512 blood flow values. The comparison of the RBF values yielded high linear correlation (mean r(2) = 0.95 +/- 0.03 to 0.97 +/- 0.02) and excellent agreement (bias 5.4-6.7%, precision 9.9-16.5%) of both methods. Our results indicate the validity of MS and of the automated tissue processing technique by means of the SPU. Copyright (C) 2002 S. Karger AG, Basel

    Transcutaneous vagus nerve stimulation via tragus or cymba conchae: Are its psychophysiological effects dependent on the stimulation area?

    Get PDF
    Efforts in optimizing transcutaneous vagus nerve stimulation (tVNS) are crucial to further develop its potential in improving cognitive and autonomic regulation. The present study focused on this topic. The aim was to compare for the first time the main stimulation areas of the ear currently used in studies with tVNS, taking cognitive as well as neurophysiological effects into account. The main areas to be compared with one another were tragus, cymba conchae, and earlobe (sham) stimulation. Post-error slowing, which has already been shown to be influenced by tVNS, was used to investigate the cognitive effects of tVNS when applied on the different auricular areas. On the neurophysiological level, we measured pupillary responses as an index of norepinephrine activity during post-error slowing, and cardiac vagal activity to investigate the activation of neural pathways involved in post-error slowing. Stimulation of different auricular areas led to no differences in post-error slowing and in pupillary responses. However, the neurological processes involved in post-error slowing could be observed, since norepinephrine activity increased after committing an error. Further, there was an increase in cardiac vagal activity over the test period that was independent of the stimulation areas. The results suggest that tVNS targeting the ear might have a non-specific effect on the processing of error commission, on pupillary responses, and on cardiac vagal activity. We conclude that it is necessary to consider alternatives for sham conditions other than electrical earlobe stimulation. [Abstract copyright: Copyright © 2021 Elsevier B.V. All rights reserved.

    The diving response and cardiac vagal activity: A systematic review and meta‐analysis

    Get PDF
    This article aimed to synthesize the various triggers of the diving response and to perform a meta-analysis assessing their effects on cardiac vagal activity. The protocol was preregistered on PROSPERO (CRD42021231419; 01.07.2021). A systematic and meta-analytic review of cardiac vagal activity was conducted, indexed with the root mean square of successive differences (RMSSD) in the context of the diving response. The search on MEDLINE (via PubMed), Web of Science, ProQuest and PsycNet was finalized on November 6th, 2021. Studies with human participants were considered, measuring RMSSD pre- and during and/or post-exposure to at least one trigger of the diving response. Seventeen papers (n = 311) met inclusion criteria. Triggers examined include face immersion or cooling, SCUBA diving, and total body immersion into water. Compared to resting conditions, a significant moderate to large positive effect was found for RMSSD during exposure (Hedges' g = 0.59, 95% CI 0.36 to 0.82, p < .001), but not post-exposure (g = 0.11, 95% CI −0.14 to 0.36, p = .34). Among the considered moderators, total body immersion had a significantly larger effect than forehead cooling (QM = 23.46, df = 1, p < .001). No further differences were detected. Limitations were the small number of studies included, heterogenous triggers, few participants and low quality of evidence. Further research is needed to investigate the role of cardiac sympathetic activity and of the moderators

    The neurophysiology of continuous action monitoring.

    Get PDF
    Monitoring actions is essential for goal-directed behavior. However, as opposed to short-lasting, and regularly reinstating monitoring functions, the neural processes underlying continuous action monitoring are poorly understood. We investigate this using a pursuit-tracking paradigm. We show that beta band activity likely maintains the sensorimotor program, while theta and alpha bands probably support attentional sampling and information gating, respectively. Alpha and beta band activity are most relevant during the initial tracking period, when sensorimotor calibrations are most intense. Theta band shifts from parietal to frontal cortices throughout tracking, likely reflecting a shift in the functional relevance from attentional sampling to action monitoring. This study shows that resource allocation mechanisms in prefrontal areas and stimulus-response mapping processes in the parietal cortex are crucial for adapting sensorimotor processes. It fills a knowledge gap in understanding the neural processes underlying action monitoring and suggests new directions for examining sensorimotor integration in more naturalistic experiments. [Abstract copyright: © 2023 The Author(s).

    TRACK-a new algorithm and open-source tool for the analysis of pursuit-tracking sensorimotor integration processes.

    Get PDF
    In daily life, sensorimotor integration processes are fundamental for many cognitive operations. The pursuit-tracking paradigm is an ecological and valid paradigm to examine sensorimotor integration processes in a more complex environment than many established tasks that assess simple motor responses. However, the analysis of pursuit-tracking performance is complicated, and parameters quantified to examine performance are sometimes ambiguous regarding their interpretation. We introduce an open-source algorithm (TRACK) to calculate a new tracking error metric, the spatial error, based on the identification of the intended target position for the respective cursor position. The identification is based on assigning cursor and target direction changes to each other as key events, based on the assumptions of similarity and proximity. By applying our algorithm to pursuit-tracking data, beyond replication of known effects such as learning or practice effects, we show a higher precision of the spatial tracking error, i.e., it fits our behavioral data better than the temporal tracking error and thus provides new insights and parameters for the investigation of pursuit-tracking behavior. Our work provides an important step towards fully utilizing the potential of pursuit-tracking tasks for research on sensorimotor integration processes. [Abstract copyright: © 2023. The Author(s).
    corecore