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  Abstract
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Background: Individuals are able to perform goal-directed behaviors thanks to executive functions. According to the neurovisceral
integration model, executive functions are upregulated by brain areas such as the prefrontal and cingulate cortices, which are
also crucially involved in controlling cardiac vagal activity. An array of neuroimaging studies already showed that these same brain
areas are activated by transcutaneous vagus nerve stimulation (tVNS). Despite evidence towards effects of tVNS on specific
executive functions such as inhibitory control, there have been no studies investigating what type of inhibition is improved by
tVNS by systematically addressing them within the same experiment. Furthermore, the effect of tVNS on another core executive
function, cognitive flexibility, has not yet been investigated.
Objective: We investigated the effects of tVNS on core executive functions such as inhibitory control and cognitive flexibility.
Methods: Thirty-two participants (nine women, Mage = 23.17) took part in this study. Vagally-mediated heart rate variability
parameters (root mean square of successive differences, RMSSD, and high frequency, HF) were measured while participants
performed four different cognitive tasks that mainly rely on different aspects of both the aforementioned executive functions.
Results: Despite clear conflict effects in the four tasks, only performance on the task used to measure set-shifting paradigm was
improved by tVNS, with switch costs being lower during tVNS than during sham stimulation. Furthermore, HF increased during
each of the cognitive flexibility tasks, although HF during tVNS did not differ from HF during sham stimulation.
Conclusion: The results indicate for the first time a) that tVNS can increase cognitive flexibility in a set-shifting paradigm, and b)
that tVNS may exert a stronger effect on cognitive flexibility than inhibition. The present study provides only partial evidence for
the neurovisceral integration model. Future studies should address further paradigms that demand cognitive flexibility, thus
investigating this new hypothesis on the specificity of the tVNS effects on cognitive flexibility.

   

  Contribution to the field

This manuscript investigates the effect of transcutaneous vagus nerve stimulation (tVNS), a technology used to non-invasively
modulate vagal activity, on executive functions and on cardiac vagal activity. Regarding executive functions, we focused on
inhibitory control and cognitive flexibility, core executive functions that are necessary for higher-order cognitive functioning. The
present study is the first to consider different aspects of inhibitory control and cognitive flexibility in an integrative manner. To
achieve this, we make use of an integrative theoretical background, namely the neurovisceral integration model, and use four
cognitive tasks within the same study setup. These tasks are thought to rely mainly on different subtypes of both these executive
functions. Results showed that only performance on task-switching was improved by tVNS, with switch costs being lower during
tVNS than during sham stimulation. Furthermore, high frequency (HF) heart rate variability, an index of cardiac vagal activity,
increased during each of the cognitive flexibility tasks, although HF during tVNS did not differ from HF during sham stimulation.
These results indicate for the first time a) that tVNS can increase cognitive flexibility in a task-switching paradigm, and b) that
tVNS may exert a very specific influence on core executive functions.
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Abstract 1 

Background: Individuals are able to perform goal-directed behaviors thanks to executive 2 

functions. According to the neurovisceral integration model, executive functions are 3 
upregulated by brain areas such as the prefrontal and cingulate cortices, which are also 4 

crucially involved in controlling cardiac vagal activity. An array of neuroimaging studies 5 
already showed that these same brain areas are activated by transcutaneous vagus nerve 6 

stimulation (tVNS). Despite evidence towards effects of tVNS on specific executive 7 
functions such as inhibitory control, there have been no studies investigating what type of 8 

inhibition is improved by tVNS by systematically addressing them within the same 9 
experiment. Furthermore, the effect of tVNS on another core executive function, cognitive 10 

flexibility, has not yet been investigated.  11 

Objective: We investigated the effects of tVNS on core executive functions such as 12 

inhibitory control and cognitive flexibility.  13 

Methods: Thirty-two participants (nine women, Mage = 23.17) took part in this study. 14 

Vagally-mediated heart rate variability parameters (root mean square of successive 15 
differences, RMSSD, and high frequency, HF) were measured while participants performed 16 

four different cognitive tasks that mainly rely on different aspects of both the aforementioned 17 
executive functions.  18 

Results: Despite clear conflict effects in the four tasks, only performance on the task used to 19 
measure set-shifting paradigm was improved by tVNS, with switch costs being lower during 20 

tVNS than during sham stimulation. Furthermore, HF increased during each of the cognitive 21 
flexibility tasks, although HF during tVNS did not differ from HF during sham stimulation.  22 

Conclusion: The results indicate for the first time a) that tVNS can increase cognitive 23 
flexibility in a set-shifting paradigm, and b) that tVNS may exert a stronger effect on 24 

cognitive flexibility than inhibition. The present study provides only partial evidence for the 25 
neurovisceral integration model. Future studies should address further paradigms that demand 26 

cognitive flexibility, thus investigating this new hypothesis on the specificity of the tVNS 27 
effects on cognitive flexibility. 28 

 29 

Keywords: tVNS, vagus nerve stimulation, HRV, heart rate variability, cardiac vagal 30 

activity, task switching, neurovisceral integration model  31 
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1 Introduction 32 

Transcutaneous vagus nerve stimulation (tVNS) is a technology used to electrically and non-33 

invasively modulate vagal activity through the auricular branch of the vagus nerve. There has 34 
been an increasing amount of studies using tVNS to enhance cognitive processes that rely on 35 

prefrontal activity. An array of these studies addressed specific aspects of inhibitory control 36 
separately (e.g., Keute, Ruhnau, Heinze, & Zaehle, 2018; Ventura-Bort et al., 2018), whereas 37 

others investigated more complex cognitive functioning such as creativity (Colzato, Ritter, et 38 
al., 2018) and implicit spiritual self-representation (Finisguerra et al., 2019). Attempts 39 

motivated by theory-driven hypotheses to systematically investigate the effects of tVNS on 40 
different aspects of basic cognitive functions are still scarce. Based on the predictions 41 

outlined in the neurovisceral integration model (Thayer et al., 2009), the current study aimed 42 
at investigating the effects of tVNS on the core executive functions inhibitory control and 43 

cognitive flexibility (Diamond, 2013). Furthermore, and also in line with the neurovisceral 44 
integration model, we measured cardiac vagal activity during tVNS and cognitive 45 

performance, a parameter suggested to reflect the effectiveness of executive functioning. 46 

 Executive functions refer to top-down mental processes that serve goal-directed 47 

behavior (Diamond, 2013). Inhibitory control and cognitive flexibility are considered core 48 
executive functions, meaning that they are necessary components for building higher-order 49 

executive functions (Diamond, 2013; Miyake & Friedman, 2012). Inhibitory control involves 50 
the ability to override dominant or prepotent responses by controlling one’s attention and 51 

behavior, and can be distinguished between selective attention and response inhibition 52 
(Diamond, 2013). Selective attention is expressed by the inhibitory cognitive control of 53 

attention, which occurs by suppressing prepotent mental representations on the level of 54 
perception. Response inhibition is a behavioral inhibition that keeps a person from acting 55 

impulsively. Cognitive flexibility consists in quickly and flexibly switching between tasks or 56 
mental sets (Diamond, 2013). It can be broken down into task switching and set shifting. 57 

Task switching differs from set shifting in the type of conflict: task switching is related to 58 
switching between tasks with different instructions involving different stimuli. Set shifting, in 59 

turn, consists of shifting attention between different features of the same stimuli to follow a 60 
given instruction (Dajani & Uddin, 2015).  61 

Executive functioning is linked to prefrontal activity (Arnsten & Li, 2004). According 62 
to the neurovisceral integration model (Smith et al., 2017; Thayer et al., 2009), cardiac vagal 63 

activity—the activity of the vagus nerve regulating cardiac functioning—reflects the output 64 
of the central autonomic network, which links the prefrontal cortex to the heart (Thayer et al., 65 

2009). The optimal activation of the neural pathways within this network is crucial for 66 
performing a given task that requires cognitive effort and for showing flexible responses to a 67 

changing environment (Thayer et al., 2009). Because cardiac vagal activity and executive 68 
functioning share common underlying neurovisceral self-regulation mechanisms, higher 69 

cardiac vagal activity is associated with improved executive functioning. Cardiac vagal 70 
activity can be indexed via heart rate variability (HRV), the difference in the time interval 71 

between adjacent heartbeats (Malik, 1996), and specifically by the root mean square of the 72 
successive differences (RMSSD) and by high-frequency (HF). 73 

There is a large body of empirical evidence linking higher levels of cardiac vagal 74 
activity to higher executive performance (Inhibitory control: Alderman & Olson, 2014; 75 

cognitive flexibility: Colzato, Jongkees, de Wit, van der Molen, & Steenbergen, 2018; 76 
Johnsen et al., 2003). Based on the evidence of the relationship between executive 77 

functioning and cardiac vagal activity as indexed by HRV (RMSSD and HF), in the present 78 
study we will consider the executive functions described here to investigate if tVNS can 79 
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improve different types of inhibitory control and cognitive flexibility as well as cardiac vagal 80 
activity. 81 

The expected link between tVNS and executive functions can be understood by 82 
considering the neuroanatomical pathways of the vagus nerve. The electrical signal, starting 83 

in the auricular branch of the vagus nerve (ABVN), reaches the nucleus tractus solitarius, 84 
which is a crucial structure that projects to a variety of brain areas, including cortical 85 

regions such as the anterior cingulate cortex and the prefrontal cortex (Aihara et al., 2007). 86 
As shown by several functional magnetic resonance imaging (fMRI) studies (Badran et al., 87 

2018; Frangos, Ellrich, & Komisaruk, 2015; Kraus et al., 2013; Yakunina & Kim, 2017), 88 
tVNS evoked, in contrast to sham stimulation, higher activity in the nucleus tractus 89 

solitarius (Frangos et al., 2015; Yakunina & Kim, 2017), in the left prefrontal cortex and in 90 
cingulate areas (Badran et al., 2018). Importantly, these brain areas affected by tVNS 91 

correspond to the areas described by the neurovisceral integration model as regulating both 92 
executive and cardiac regulation, such as the prefrontal cortex and cingulate areas (Thayer 93 

et al., 2009, 2012). 94 

So far, there are studies showing that tVNS affects the types of inhibitory control 95 

(Table 1). These studies used varying cognitive paradigms, which comprise different 96 
dependent variables, and addressed the inhibitory control types only separately and in 97 

different study designs (see Table 1 for an overview of design-related characteristics of 98 
studies investigating inhibitory control using tVNS). Thus, an integrating, evidence-based 99 

discussion on the interplay between tVNS and these types of inhibitory control has not been 100 
possible. 101 

Table 1 here 102 

As stated above, executive functions and cardiac vagal activity share overlapping 103 
neurological structures, with both being upregulated by cortical areas, including the 104 

prefrontal cortex (Thayer et al., 2009). Given that the tVNS signal is sent afferently to the 105 
prefrontal cortex via ABVN, cardiac vagal activity has also been thought to be affected by 106 

tVNS (Murray et al., 2016). Using RMSSD to measure the effect of tVNS on cardiac vagal 107 
activity, different studies did not find any differences between active and sham stimulation 108 

(Burger, Van der Does, Thayer, Brosschot, & Verkuil, 2019; Burger et al., 2016; De Couck 109 
et al., 2017). One study showed in three experiments that tVNS consistently increased 110 

RMSSD; however, this increase was similarly observed during both active and sham 111 
stimulation, with this possibly indicating that tVNS sends non-specific signals at the 112 

brainstem level that similarly influence cardiac vagal activity in both active and sham 113 
stimulation (Borges et al., 2019). Nonetheless, this study did not take any cognitive 114 

paradigm into account, which might have contributed to understanding if this possible 115 
signal non-specificity—identified as an increase in cardiac vagal activity during both active 116 

and sham stimulation—can also be observed in cognitive functions. This possibility would 117 
challenge the use of earlobe sham stimulation, which has widely been used in current 118 

research with tVNS. Therefore, further studies on the effect of active as well as sham tVNS 119 
on cardiac vagal activity are still needed. 120 

To summarize, there is evidence towards the modulation of inhibitory control by 121 
tVNS; however, these findings refer to different cognitive phenomena that have been found 122 

in different samples and in the context of different study designs. So far, there is no study that 123 
has systematically investigated the effects of tVNS on different aspects of core executive 124 

functions, and importantly, there is a lack of studies whose hypotheses were explicitly 125 
motivated by a theory. To address different aspects of executive functioning in an integrative 126 

way, it is crucial to use the same study design and setup. This way it is possible to control for 127 
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possible experimental variations such as length of resting and of stimulation periods, daytime, 128 
and other factors that might influence measurement of cardiac vagal activity. Confounders 129 

related to study design, e.g., instructions, laboratory setup, and differences in sample size, can 130 
also be considered. Thus, going beyond existing literature, the present study aims at 131 

investigating the effects of tVNS on inhibitory control, cognitive flexibility, and cardiac vagal 132 
activity. To achieve this, it uses an integrative theoretical background, namely the 133 

neurovisceral integration model (Thayer et al., 2009), and applies the same study design 134 
across these target executive functions. Based on the evidence on neurophysiological 135 

pathways related to tVNS, addressing cognitive processes that mainly rely on different 136 
executive functions might help to further understand how tVNS affects basic cognitive 137 

processes involved in goal-directed behavior. 138 

Against this background, it was hypothesized that the performance on the four 139 

cognitive tasks is higher during active tVNS, compared to sham stimulation (H1a for 140 
selective attention, H1b for response inhibition, H1c for task switching, and H1d for set 141 

shifting; this assignment of the subtypes of executive functions to the letters is also valid for 142 
the next hypotheses). Furthermore, we expected that cardiac vagal activity increases 143 

relatively to the resting phase only during active stimulation and not during sham stimulation, 144 
with cardiac vagal activity during the tasks being higher in the active tVNS condition (H2a-145 

d). Moreover, we hypothesized that cardiac vagal activity during tVNS and before each 146 
cognitive task is positively associated with task performance only in the active tVNS 147 

condition (H3a-d). Finally, we expected cardiac vagal activity during the tasks to have a more 148 
strongly positive relationship to task performance in the active condition than in the sham 149 

condition (H4a-d). 150 

2 Materials and Methods 151 

2.1 Participants 152 

As it is not possible to run power analyses for multi-factorial repeated-measures designs with 153 

G*Power 3.1 (Faul et al., 2007), we followed the same procedure found in previous studies 154 
with similar study design (e.g., Liepelt, Porcu, Stenzel, & Lappe, 2019). Accordingly, we 155 

matched the average number of participants in the studies that investigated executive 156 
functions with tVNS using a within-subject design (summarized in Table 1). Since we also 157 

measured cardiac vagal activity, we additionally considered the average sample size in 158 
Borges et al. (2019), because this study systematically investigated the effect of tVNS on 159 

cardiac vagal activity in different experiments. Twenty-nine participants were calculated to 160 
be necessary to find an effect. Anticipating possible exclusions due to drop-outs and after 161 

data cleaning, we recruited 35 participants. Thirty-two participants (nine female) were 162 
included in the analysis due to technical problems with the electrocardiogram (ECG) signal 163 

of three participants. Mean age was 23.17 years old (SD = 4.08), whereby female participants 164 
had Mage = 21.11, SD = 1.27, and male participants had Mage = 24.87, SD = 5.87). Consort 165 

flowchart (Dwan et al., 2019) is presented in Figure 1. 166 

Figure 1 here 167 

The sample consisted of healthy students at the local university. Participants were 168 
eligible if they were not pregnant at the time of the experiment and free of cardiovascular or 169 

neurological diseases, or major mental disorders, for example severe depression or anxiety 170 
disorder. They were asked not to smoke, exercise, or consume food, alcohol, or caffeine for at 171 

least 2 h before participation. These potentially confounding variables as well as tVNS 172 
safety-related questions were assessed by means of an adapted version of the demographics 173 
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questionnaire for experiments using HRV developed by Laborde, Mosley, and Thayer (2017). 174 
All participants gave written informed consent prior to the experiment, which was approved 175 

by the local ethical committee (ethics approval number 120/2018).  176 

2.2 Transcutaneous vagus nerve stimulation 177 

We employed the NEMOS tVNS device developed by Cerbomed (Erlangen, Germany). Two 178 
titan electrodes found in a structure similar to an earphone are placed in the cymba conchae 179 

of the left ear, an area thought to be exclusively innervated by the ABVN (Peuker & Filler, 180 
2002), in order to electrically stimulate these vagal fibers (Ellrich, 2011). In the sham 181 

stimulation, the electrodes are placed on the left earlobe, which is thought to be free of vagal 182 
innervation (Peuker & Filler, 2002) and has abundantly been used as a sham stimulation in 183 

research with tVNS (van Leusden et al., 2015). The tVNS device delivers a stimulation with a 184 
pulse width of 200–300 μs at 25 Hz and an on–off cycle of 30 s. Regarding the adjustment of 185 

the stimulation intensity, cardiac vagal activity may be similarly influenced by electrical 186 
afferent stimuli that are triggered by different methods to stipulate stimulation intensity 187 

(Borges et al., 2019). Therefore, we followed procedures found in previous research with 188 
tVNS that allow participants to choose their individual intensity (Fischer et al., 2018; 189 

Ventura-Bort et al., 2018). Accordingly, in each session participants received increasing and 190 
decreasing series of 10-s stimulation trials, and rated the subjective sensation of the 191 

stimulation on a 10-point scale, ranging from nothing (0), light tingling (3), strong tingling 192 
(6), to painful (10). The increasing series of trials started from an intensity of 0.01 mA and 193 

increased by 0.01 mA on a trial-by-trial basis until participants reported a tingling sensation 194 
of 9. Before starting the decreasing series, the same intensity was repeated and then reduced 195 

trial by trial in 0.01 mA until a subjective sensation of 6 or below was experienced. This 196 
procedure was repeated a second time. The final stimulation intensity used for the 197 

experimental procedure was calculated based on the average of the four intensities rated as 8 198 
(two from the increasing and two from the decreasing series). The average chosen stimulation 199 

intensity in the active condition was M = 2.19 mA (SD = 0.93) and M = 2.20 mA (SD = 1.06) 200 
in the sham condition. These stimulation intensities did not differ significantly from each 201 

other, t(31) = 0.063, p = .950. 202 

2.3 Cardiac vagal activity 203 

To assess cardiac vagal activity, we used the Faros 180° device from Mega Electronics 204 
(Kuopio, Finland) with a set sampling rate of 500 Hz. This device enables users to measure 205 

the ECG signal as recommended by current guidelines on HRV measurement for 206 
psychophysiological experiments (Laborde et al., 2017). We placed two disposable ECG pre-207 

gelled electrodes (Ambu L-00-S/25, Ambu GmbH, Bad Nauheim, Germany) on the chest, the 208 
positive electrode on the right infraclavicular fossa and the negative one on the left anterior 209 

axillary line below the 12th rib.  210 

RMSSD, as well as HF (0.15 Hz to 0.40 Hz band) transformed with autoregressive 211 

modeling, were chosen as indicators of cardiac vagal activity in the main analyses (Malik et 212 
al., 1996). From ECG recordings, we extracted HRV with Kubios software (University of 213 

Eastern Finland, Kuopio, Finland), visually inspected the full ECG recording, and manually 214 
corrected artifacts (Laborde et al., 2017). Since HF is only influenced by breathing when 215 

breathing cycles are between nine cycles per minute (0.15 Hz) and up to 24 cycles per minute 216 
(0.40 Hz) (Malik et al., 1996), participants with a respiration rate of less than nine cycles per 217 

minute and more than 24 cycles per minute were excluded from analyses with HF. The 218 
respiration rates (the number of respiratory cycles per minute) was obtained multiplying the 219 
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ECG-derived respiration value obtained via the Kubios algorithm by 60 (Tarvainen, 220 
Niskanen, Lipponen, Ranta-aho, & Karjalainen, 2013) and was also separately analyzed. We 221 

considered for analysis measurements in blocks of 4 min, which is in accordance with the 222 
range suggested by recommendations for experiment planning in psychophysiological 223 

research (Laborde et al., 2017). Given that the cognitive tasks differed greatly from one 224 
another regarding time length, with the tasks lasting between 5 and 15 minutes, for the 225 

analysis within task blocks we chose a time window of the last 4 minutes respectively for 226 
each cognitive task.  227 

2.4 Cognitive tasks 228 

In order to standardize the tasks and therefore avoid response mistakes, all tasks used the 229 

keys “S” and “K” as responses for left and right, respectively. The participants were 230 
instructed to press the buttons with their index fingers, and the stimuli were presented in 231 

white against a grey background (except for the set-shifting task). We used a 24-in. flat-232 
screen monitor (1,920 x 1,080 pixels at 60 Hz) at a viewing distance of 60 cm to present the 233 

tasks and ran all of them with PsychoPy3 Version 3.0.0 (Peirce et al., 2019). The participants 234 
performed four tasks which are thought to mainly rely on inhibitory control (selective 235 

attention and response inhibition), and cognitive flexibility (task switching and set shifting). 236 
These tasks were chosen according to two criteria: First, we followed recommendations from 237 

influential reviews on executive functions (Diamond, 2013; Miyake & Friedman, 2012). For 238 
the choice of the cognitive task, we considered the task impurity problem: according to 239 

Miyake and Friedman (2012), because executive functions necessarily manifest themselves 240 
by operating on other cognitive processes, any executive task strongly implicates other 241 

cognitive processes that are not directly relevant to the target executive function. 242 
Consequently, we chose the tasks that are thought to minimize demands of other executive 243 

functions (Diamond, 2013). Second, we performed a literature search to find studies that used 244 
the tasks recommended by the aforementioned reviews and also provided evidence on the 245 

relationship with a) tVNS, b) cardiac vagal activity, and c) prefrontal activity (imaging 246 
studies). The tasks chosen are the following: 247 

2.4.1 Flanker task 248 

Following recommendations from Diamond (2013), to measure selective attention we used a 249 

modified version of the Flanker task (Eriksen & Eriksen, 1974). We used the Flanker task as 250 
reported by Alderman and Olson (2014). With this version, it could be shown that individuals 251 

with higher fitness levels expressed higher HF values during the task, and that these 252 
individuals had lower RT than the less fit group. A trial consists of five arrows in which the 253 

third one is the target arrow. Participants were asked to press the left key on the computer 254 
keyboard when the target arrow pointed to the left and the right key when the target arrow 255 

pointed to the right. Participants were instructed to respond as quickly and accurately as 256 
possible for each trial. After a practice block of 30 trials, two experimental blocks of 120 257 

trials each were presented, each separated by 30 s. Each block consisted of congruent and 258 
incongruent stimuli presented in random order. The congruent trials consisted of the target 259 

arrow being flanked by arrows facing the same direction, while incongruent trials involved 260 
the target arrow being flanked by arrows facing the opposite direction. Each stimulus was 261 

presented for 100 ms (to increase task difficulty) with a response window of 1,500 ms. A 262 
random inter-stimulus time interval of 1,100, 1,300 or 1,500 ms was also used between each 263 

50 ms visual fixation (+) and the stimulus in order to increase task difficulty (Figure 2a). 264 

 265 
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2.4.2 Spatial Stroop task 266 

The task for measuring response inhibition was the Spatial Stroop task, as this task is thought 267 

to minimize memory demands compared to other classical tasks such as the Simon task 268 
(Diamond, 2013). This response inhibition task was designed according to Marotta, Román-269 

Caballero, and Lupiáñez (2018), from which we only took the arrow part of the task, and 270 
consisted of a practice and two experimental blocks. During the practice block, 15 trials were 271 

presented, and feedback was provided. The practice block was followed by two experimental 272 
blocks of 64 experimental trials each. Participants were instructed to fixate a fixation cross 273 

presented in the center of the screen. A directional arrow appears randomly on the left or on 274 
the right side of the fixation point, and this arrow points randomly to the right or the left side. 275 

Participants are required to indicate the direction of the arrow by pressing the left key if the 276 
arrow points to the left and the right key if the arrow points to the right, while ignoring its 277 

location. They were instructed to respond as quickly and accurately as possible for each trial. 278 
The arrow was presented either left or right of the fixation cross for 2,000 ms. Feedback for 279 

incorrect key presses was provided to participants in the form of a 220-Hz tone presented for 280 
1,500 ms. This design produced trials that were congruent (e.g., a right-indicating target 281 

presented on the right) or incongruent (e.g., a left-indicating target presented on the right, see 282 
Figure 2b). 283 

2.4.3 Number-Letter task 284 

We used the Number-Letter task (NLT) as described in Colzato, Jongkees, et al. (2018), 285 

which found that participants with higher resting-state cardiac vagal activity showed greater 286 
flexibility than individuals with lower resting-state cardiac vagal activity. Throughout the 287 

task, a 10-cm square divided into four quadrants was displayed on the computer screen. 288 
During each trial, a character pair consisting of letters, numbers or symbols was presented in 289 

the center of one quadrant. Participants had to either perform a letter task in which they 290 
classified the letter in the stimulus pair as a consonant or a vowel, or they had to perform a 291 

number task in which they classified the number in the pair as odd or even. They were 292 
instructed to respond as quickly and accurately as possible for each trial. After their response 293 

or after 2,000 ms had passed, a new stimulus pair was displayed in the next quadrant 294 
following a clockwise pattern. The upper quadrants were assigned to the letter task and the 295 

lower quadrants to the digit task, so that the display location served as a task cue and the task 296 
changed predictably. Depending on the task, the relevant character in the stimulus pair was 297 

either a letter or a digit, whereas the second and irrelevant character was either a member of 298 
the other category, so that the response afforded by this character could be congruent or 299 

incongruent with the task-relevant response, or was drawn from a set of neutral characters. 300 
This design produced switch trials in Quadrants 1 and 3, and non-switch trials when the 301 

stimuli appeared in Quadrants 2 and 4. Consonants were sampled randomly from the set <G, 302 
K, M, R>, vowels from the set <A, E, I, U>, even numbers from the set <2, 4, 6, 8>, odd 303 

numbers from the set <3, 5, 7, 9>, and neutral characters from the set <#, ?, *, %>, with the 304 
restriction that a stimulus could not be repeated on successive trials. The position of the task-305 

relevant character within a pair (left or right) was randomly determined on each trial. The 306 
participants pressed the left key to indicate “even” or “consonant” and the right key to 307 

indicate “odd” or “vowel”. Participants completed a practice set of 9 blocks, each with 16 308 
trials, before entering the experimental phase. This consisted of a set of 15 blocks, with each 309 

block again consisting of 16 trials. A short response stimulus interval (RSI) of 150 ms was 310 
chosen which remained constant within a given set. A short RSI, the so-called preparation 311 

component, has been shown to provoke more pronounced switch costs than long RSI, also 312 
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known as residual component. This is because shorter intervals usually hamper the 313 
reconfiguration process before the stimulus is presented (Colzato, Jonsgkees, et al., 2018). 314 

Stimuli were response-terminated or presented for a maximum duration of 2,000 ms (Figure 315 
2c). 316 

2.4.4 Dimensional Change Card Sorting task 317 

The Dimensional Change Card Sorting task (DCCS) based on Zelazo and colleagues (2014) 318 

was used in the present study to measure set shifting, as recommended by Diamond (2013). 319 
This version is part of the NIH Toolbox Cognition Battery and was validated with 268 adults 320 

(Zelazo et al., 2014). DCCS makes use of two different styles of bivalent cards, displaying a 321 
red rabbit on the left and a blue truck on the right side at the bottom of the screen throughout 322 

the task. The participants are then asked to respond to a centrally-presented bivalent stimulus 323 
(blue/red rabbit/truck) regarding either its shape or color. Pressing the left key sorts the 324 

stimulus to the location of the left target (i.e., the red rabbit); pressing the right key sorts the 325 
stimulus to the location of the right target (i.e., the blue truck). The DCCS task consists of 326 

four blocks (practice, pre-switch, post-switch, and mixed). During the practice block with 24 327 
trials (12 for each dimension), participants receive a feedback whether the response was 328 

correct or false. At the beginning of each trial, a fixation cross was shown for 1,000 ms, being 329 
followed by the cue (the word “color” or “shape”) they had to respond to. This cue was 330 

presented for 1,000 ms. The stimulus was then presented and disappeared only after a 331 
response was recorded. Test trials started with a pre-switch block consisting of 15 trials that 332 

had the same sorting dimension (color or shape) that was used in the preceding practice 333 
block. After that, participants were cued to the other dimension, and a post-switch block with 334 

15 trials took place. When those two blocks are finished, the mixed block begins. Participants 335 
are then instructed to sort the stimuli to the dimensions and they are presented with 50 mixed 336 

trials that are presented in a pseudorandomized order. This mixed block includes 40 337 
“dominant” and 10 “non-dominant” trials. The dominant dimension, which could be shape or 338 

color, was always the sorting dimension that participants were presented to in the post-switch 339 
block. The arrangement for all three test blocks is the same as for practice trials, but no 340 

feedback is provided. The order of the pre- and post-switch blocks as well as the task version 341 
with one of the dominant dimensions was counterbalanced across participants (Figure 2d).   342 

Figure 2 here 343 

2.5 Procedure 344 

The experiment had a sham-controlled, single-blinded, randomized crossover within-subject 345 
design. For each stimulation condition (active or sham stimulation), the participants 346 

underwent all tasks within one session. The order of the tasks was randomized for each 347 
participant beforehand. After determining the individual stimulation intensity (familiarization 348 

phase), a total of four task blocks were presented, one per task. Each block consisted of one 349 
cognitive task and a total of three measurements: The first one was done to take only resting 350 

cardiac vagal activity into account (resting period, 4-min measuring interval), the second to 351 
measure cardiac vagal activity during the stimulation (tVNS period, 4-min period), and the 352 

third to measure cardiac vagal activity during the stimulation simultaneously with the 353 
cognitive tasks (task period, 4 min). The tVNS period was included because there is a lack of 354 

evidence on the temporal latency of the effects of tVNS (Borges et al., 2019). Thus, a built-up 355 
period of four minutes of the effects of tVNS and sham stimulation was used, as done in 356 

previous studies (e.g. Burger et al., 2019). Between each test block, the participants could 357 
take a 30-s break and were then asked to continue with the next task (Figure 3). 358 
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Figure 3 here 359 

The data collection took place on two different dates with approximately one week 360 

between the two sessions. During the sessions, either active or sham stimulation was 361 
administered to each participant. According to the crossover design, all participants 362 

underwent both stimulation conditions. The order of stimulation condition (active-sham; 363 
sham-active) was counterbalanced across participants. After taking a seat, signing the 364 

informed consent, and answering questions from a body check which included questions 365 
related to the exclusion criteria, the ECG and the tVNS electrodes were positioned. The 366 

participants then performed the four cognitive tasks across the four blocks. The HRV resting 367 
measure was taken in a sitting position with the eyes looking at a grey screen, knees at 90°, 368 

and hands on the thighs. The same body position was kept for all measurement periods, and 369 
the participants were asked to move as little as possible during the experiment. The order of 370 

the tasks was counterbalanced, however the course of events in both conditions was identical. 371 
At the end of the second testing session, the participants were debriefed and thanked. 372 

2.6 Data analysis 373 

Outliers in the HRV data (less than 1% of the data) were winsorized, meaning that values 374 

higher/lower than two standard deviations from the mean were transformed into a value of 375 
two standard deviations from the mean. Since the HRV data as well as the tasks data were 376 

afterwards still positively skewed, they were log-transformed to obtain a normal distribution. 377 
We ran the analyses with the log-transformed values; however, we indicate the raw data as 378 

descriptive values, given that they can be more easily interpreted. We excluded incorrect and 379 
missed responses for all RT analyses, and for all error percentage analyses, incorrect and 380 

missed responses were included. We defined the same cut-off values to exclude outliers in 381 
the four cognitive tasks, namely responses faster than 200 ms and greater than 2,000 ms. 382 

To test H1a-d, we ran 2x2 repeated-measures analyses of variance (rmANOVAs) with 383 
stimulation condition (active vs. sham stimulation) and congruency (congruent vs. 384 

incongruent trial) for inhibitory control tasks, and stimulation condition (active vs. sham 385 
stimulation) and trial type (switch vs. non-switch trial) for cognitive flexibility tasks as 386 

within-subject factors. The relevant task parameters are RT and percentage error for all four 387 
tasks, and additionally switch costs for the cognitive flexibility tasks. Only for the effect of 388 

tVNS on switch costs (RT on switch trials minus RT on repeated trials), paired samples t-389 
tests were run. To investigate H2a-d, we ran a 2 (active and sham stimulation) x 3 (resting, 390 

single tVNS, and task period) rmANOVA for each task block. Relevant dependent variables 391 
were RMSSD, HF, and respiratory frequency. To address H3a-d, we ran separated Pearson 392 

product-moment correlation matrices, one for active and one for sham stimulation, for all 393 
tasks. We investigated the correlation between RMSSD and HF during the single tVNS 394 

period and RT and percentage error, while controlling HF for respiration. In the analysis of 395 
the cognitive flexibility tasks, we additionally included switch costs. Finally, to test H4a-d, 396 

we did the same analysis as for H3a-d, but considering RMSSD and HF during the tasks 397 
instead of during the single tVNS period. To control for false discovery rate (FDR) due to 398 

multiple correlation testing, for all correlation matrices we applied the Benjamini–Hochberg 399 
procedure which adjust the p value (Benjamini & Hochberg, 1995). For all rmANOVAs, 400 

Greenhouse–Geisser correction was used when sphericity was violated. In the case of a 401 
significant main or interaction effect, post hoc paired sample t-tests with aggregated means 402 

were conducted using Bonferroni correction. To quantify evidence for the hypotheses found, 403 
we ran Bayesian statistics using Bayesian information criteria (Wagenmakers, 2007) for all 404 

analyses. Terms used to discuss the reported Bayes factors are based on Wetzels and 405 
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colleagues’ recommendations (2011). Accordingly, values higher than 1 provide evidence for 406 
alternative hypotheses, whereas values lower than 1 provide evidence for null hypotheses. 407 

The Bayes factor can have the following meanings: anecdotal or worth no more than a bare 408 
mention (0.333 < B10 < 3), substantial (0.100 < B10 ≤ 0.333 or 3 ≤ B10 < 10), strong (0.033 < 409 

B10 ≤ 0.100 or 10 < B10 < 30), very strong (0.010 < B10 ≤ 0.033 or 30 ≤ B10 < 100), and 410 
decisive (B10 ≤ 0.010 or B10 ≥ 100) evidence. To control for carry-over effects on RMSSD 411 

and HF, which potentially arose in the current block due to the previous block, we tested the 412 
effect of position (i.e., first, second, third and fourth resting periods arranged chronologically) 413 

on each testing day. We also took the testing days (Day 1 and Day 2) into account in the same 414 
analysis and checked if there was a difference in RMSSD and HF from the first to the second 415 

day. We ran two separated 2 (Day 1 and Day 2) x 4 (Resting period 1, Resting period 2, 416 
Resting period 3, and Resting period 4) rmANOVAs, one for each vmHRV parameter. 417 

Furthermore, we checked whether there was a learning effect in the cognitive tasks from one 418 
testing day to the other by running 2 (Day 1 and Day 2) x 2 (congruent and incongruent or 419 

non-switch and switch trials, depending on the task) rmANOVAs, one for each behavioral 420 
measurement. Finally, to check whether tVNS affects task performance more strongly when 421 

its trials are novel, we split the trials of the tasks into first and second half, whereby first half 422 
would correspond to novel trials, and collapsed the congruent/non-switch with the 423 

incongruent/switch trials. We then ran 2x2 rmANOVAs with stimulation (active and sham 424 
stimulation) and novelty (first and second half of the task) as factors, and RT and percentage 425 

error of all tasks as dependent variables. The results of these additional analyses can be found 426 
as a supplemented material (data sheet 1). To report the results of the present study, we 427 

followed the CONSORT statement, which stands for Consolidated Standards of Reporting 428 
Trials (Dwan et al., 2019). We used IBM SPSS Statistics 26 to prepare the data and JASP 429 

0.11.1 to analyze it. Significance level was α = .05. 430 

3 Results 431 

3.1 Effects of tVNS on executive functions 432 

Descriptive statistics are presented in Table 2, and complete results of the hypothesis testing 433 

can be found in Table 3 (inhibitory control tasks) and Table 4 (cognitive flexibility tasks), 434 
here we will mainly focus on significant results as well as on results of Bayesian estimations 435 

for effects of stimulation. The rmANOVAs revealed that, regarding RTs in the Flanker task, 436 
there was an effect of congruency, F(1, 31) = 95.788, p < .001, ηp² = .755, with RTs in the 437 

congruent trials (M = 475.93 ms, SD = 52.14) being significantly shorter than in the 438 
incongruent trials (M = 555.38 ms, SD = 72.28), t(31) = 9.100, p < .001, d = 1.609. No effect 439 

of active stimulation compared to sham stimulation could be found, (p = .283). Regarding 440 
percentage error in the Flanker task, there was an effect of congruency, F(1, 31) = 8.202, p = 441 

.007, ηp² = .209, with congruent trials (M = 4.40%, SD = 4.40) presenting less errors than 442 
incongruent trials (M = 6.80%, SD = 7.12), t(31) = 3.157, p = .004, d = 0.558. No effect of 443 

active stimulation compared to sham stimulation could be found, (p = .760). According to the 444 
estimated Bayes factors (alternative/null), data provided substantial evidence for null effects 445 

of stimulation condition on RT (B10 = 0.311) and substantial evidence of null effects in 446 
percentage error (B10 = 0.196). 447 

Tables 2, 3, and 4 here 448 

For RT in the Spatial Stroop task, there was an effect of congruency, F(1, 31) = 449 

39.001, p < .001, ηp² = .557, with RTs in the congruent trials (M = 504.08 ms, SD = 51.73) 450 
being significantly shorter than in the incongruent trials (M = 531.64 ms, SD = 56.21), t(31) = 451 

6.245, p < .001, d = 1.104. No effect of active stimulation compared to sham stimulation 452 
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could be found, (p = .361). Regarding percentage error, there was an effect of congruency, 453 
F(1, 31) = 37.673, p < .001, ηp² = .549, with congruent trials (M = 1.47%, SD = 1.48) 454 

presenting less errors than incongruent trials (M = 4.39%, SD = 3.63), t(31) = 6.138, p < .001, 455 
d = 1.085. No effect of active stimulation compared to sham stimulation could be found, (p = 456 

.756). According to the estimated Bayes factors, data provided anecdotal evidence against the 457 
alternative hypothesis for stimulation condition regarding RT (B10 = 0.344) and substantial 458 

evidence against evidence for effects of stimulation on percentage error (B10 = 0.201). 459 
Furthermore, Bayesian estimation indicated substantial evidence for an interaction effect 460 

(B10 = 3.047). 461 

For NLT, an effect of trial type (switch trial vs. non-switch trial) could be found on 462 

RT, F(1, 31) = 225.365, p < .001, ηp² = .879, with non-switch trials (M = 969.73 ms, SD = 463 
130.41) having shorter RT than switch trials (M = 1,209.02 ms, SD = 127.84), t(31) = 15.012, 464 

p < .001, d = 2.654. No effect of active stimulation compared to sham stimulation could be 465 
found regarding RT (p = .505). Switch costs during active stimulation (M = 225.23 ms, SD = 466 

107.14) and during sham stimulation (M = 251.08 ms, SD = 97.47) did not differ from each 467 
other, p = .140. Regarding percentage error, there was an effect of trial type, F(1, 31) = 468 

59.615, p < .001, ηp² = .658, with non-switch trials (M = 22.68%, SD = 2.91) presenting more 469 
errors than switch trials (M = 20.39%, SD = 3.22), t(31) = 7.721, p < .001, d = 1.365. There 470 

was no main effect of stimulation (p = .168). Bayes factor indicates substantial evidence 471 
against the alternative hypothesis for stimulation condition regarding RT (B10 = 0.210), 472 

anecdotal evidence supporting the effect of stimulation on percentage error (B10 = 1.097), and 473 
anecdotal evidence against the effect of tVNS on switch costs (B10 = 0.529). 474 

For DCCS, an effect of trial type on RT could be found, F(1, 31) = 14.720, p = .001, 475 
ηp² = .322, with non-switch trials (M = 969.73 ms, SD = 130.41) having shorter RT than 476 

switch trials (M = 1,209.02 ms, SD = 127.84), t(31) = 15.012, p < .001, d = 2.654. There was 477 
no effect of stimulation on RT (p = .904), but there was an interaction effect between trial 478 

type and stimulation conditions, F(1, 31) = 11.106, p = .002, ηp² = .264. Post-hoc analyses 479 
(Bonferroni-corrected p = .0125) revealed that RT in non-switch trials during the sham 480 

stimulation condition (M = 557.51 ms, SD = 113.56) was significantly lower than RT in 481 
switch trials during the sham condition (M = 614.01 ms, SD = 138.65), t(31) = 4.767, 482 

p < .001, d = 0.843. Regarding percentage error, there was an effect of trial type, F(1, 31) = 483 
15.343, p < .001, ηp² = .331, with non-switch trials having a lower percentage error (M = 484 

17.49%, SD = 11.39) than switch trials (M = 28.00%, SD = 17.30), t(31) = 3.917, p < .001, d 485 
= 0.692. There was no effect of stimulation on RT (p = .677). Active and sham stimulation 486 

differed significantly regarding switch costs, with switch costs during active stimulation (M = 487 
4.77 ms, SD = 39.75) being lower than during sham condition (M = 37.54 ms, SD = 45.39), 488 

t(31) = 2.797, p = .009, d = 0.494. Bayes factor indicates substantial evidence against any 489 
effects of stimulation condition on RT (B10 = 0.192), against the alternative hypothesis for 490 

percentage error (B10 = 0.233), and substantial evidence for the differences in switch costs 491 
(B10 = 4.916). Furthermore, Bayesian estimation indicated substantial evidence for an 492 

interaction effect (B10 = 3.047). 493 

3.2 Effects of tVNS on cardiac vagal activity 494 

Descriptive statistics are presented in Table 5, and complete results of the hypothesis testing 495 
can be found in Table 3 (inhibitory control tasks) and Table 4 (cognitive flexibility tasks), here 496 

we will mainly focus on significant results as well as on results of Bayesian estimations for 497 
effects of stimulation. Regarding changes of cardiac vagal activity within the test blocks (i.e., 498 

between resting, single tVNS, and tVNS with task periods, as well as between active and sham 499 
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stimulation), for Flanker task there was neither a main effect of stimulation condition (p = 500 
.621), nor of time on RMSSD (p = .065). The same applies to the main effects on HF 501 

(stimulation condition: p = .135; time: p = .221). There was no effect of stimulation on 502 
respiratory frequency (p = .405), but an effect of time, F(1.587, 49.206) = 3.518, p = .047, ηp² 503 

= .102. However, post-hoc analyses (Bonferroni-corrected p = .017) revealed no significant 504 
mean differences. According to the estimated Bayes factors, data provided substantial evidence 505 

against the alternative hypothesis for stimulation condition regarding RMSSD (B10 = 0.215), 506 
and anecdotal evidence regarding HF (B10 = 0.664). 507 

Table 5 here 508 

For the Spatial Stroop task, neither a main effect of stimulation on RMSSD, (p = 509 

.926), nor of time, (p = .084), was found. There was an interaction effect between the 510 
stimulation condition and RMSSD, F(2, 62) = 3.845, p = .027, ηp² = .110, however post-hoc 511 

analyses revealed no effects after Bonferroni correction (p = .006). There was no effect of 512 
stimulation (p = .915), and time (p = .132) on HF and no effects on respiratory frequency 513 

(stimulation: p = .648, time: p = .062). Bayes factor indicates substantial evidence against the 514 
alternative hypothesis for stimulation condition regarding RMSSD (B10 = 0.189), HF (B10 = 515 

0.196), and respiratory frequency (B10 = 0.227). 516 

For the NLT, there was neither an effect of stimulation on RMSSD (p = .991), nor on 517 

time (p = .599). Regarding HF, no effect of stimulation (p = .575), but a main effect of time 518 
was found, F(2, 46) = 4.689, p = .014, ηp² = .039. Post-hoc analyses (Bonferroni-corrected p 519 

= .017) revealed that HF during the resting period (M = 12.92, SD = 8.25) was significantly 520 
lower than during the task period (M = 18.31, SD = 9.39), t(31) = 4.108, p < .001, d = 0.726. 521 

According to the estimated Bayes factors, there is substantial evidence against the alternative 522 
hypothesis for stimulation condition regarding RMSSD (B10 = 0.152), regarding HF (B10 = 523 

0.216), and respiratory frequency (B10 = 0.159). 524 

For the DCCS, there was neither a main effect of stimulation condition on RMSSD, (p 525 

= .877), nor of time, (p = .212). Regarding HF, there was no effect of stimulation, (p = .646), 526 
but a main effect of time, F(1.613, 38.708) = 6.821, p = .002 ηp² = .078. Post-hoc analyses 527 

(Bonferroni-corrected p = .017) revealed that HF increased from resting (M = 13.36, SD = 528 
9.42) to single stimulation phase, (M = 16.71, SD = 11.20), t(31) = 3.205, p = .003, d = 0.566, 529 

and from resting to task phase, (M = 19.71, SD = 8.96), t(31) = 4.708, p < .001, d = 0.832. 530 
According to the estimated Bayes factors, data provided substantial evidence against the 531 

alternative hypothesis for RMSSD regarding stimulation condition (B10 = 0.160), regarding 532 
HF (B10 = 0.186), and regarding respiratory frequency (B10 = 0.168). 533 

3.3 Correlations between HRV and cognitive performance 534 

We ran Pearson product-moment correlations to investigate if vmHRV parameters that were 535 

measured during the single stimulation phase and the task phase predicted performance on 536 
the cognitive tasks. Complete correlation matrices can be found in Tables 6 (for inhibitory 537 

control tasks) and 7 (for cognitive flexibility tasks), here we will only present significant 538 
results. None of the vmHRV parameters measured during the Flanker task correlated with the 539 

cognitive parameters. Regarding the Spatial Stroop task, there was only significant 540 
correlations between the parameters measured in the sham condition: RT in both congruent (r 541 

= -.42, p = .018) and incongruent trials (r = -.39, p = .027) correlated negatively with 542 
RMSSD during the single stimulation phase. HF correlated negatively with RT in the 543 

congruent trials during the single stimulation phase (r = -.43, p = .038), and positively with 544 
percentage error of the incongruent trials during the single stimulation phase (r = .43, p = 545 
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.032). In the NLT, RMSSD correlated positively with percentage error of non-switch trials 546 
during the active condition (r = .40, p = .025). In the active condition, HF during the single 547 

stimulation phase correlated negatively with RT of both non-switch (r = -.44, p = .015) and 548 
switch trials (r = -.50, p = .005), and HF during the task phase correlated negatively with 549 

switch costs (r = -.42, p = .019). In the sham condition, HF correlated positively with 550 
percentage error during the task phase (r = .48, p = .015). In the DCCS, switch costs in the 551 

active condition correlated positively with RMSSD during the single stimulation phase (r = 552 
.40, p = .024), with RMSSD during the task phase (r = .37, p = .035), and negatively with HF 553 

during the task phase (r = -.42, p = .019). HF during the task phase correlated positively with 554 
RT of both non-switch (r = -.40, p = .026) and switch trials (r = -.42, p = .018). Importantly, 555 

after adjusting the p values using the FDR correction, none of these correlations remained 556 
significant. 557 

4 Discussion 558 

The aim of this study was to investigate the effect of tVNS on performance in tasks 559 

commonly used to measure inhibitory control and cognitive flexibility, core executive 560 
functions on which higher-order executive functions rely. Based on the neurovisceral 561 

integration model (Thayer et al., 2009), we hypothesized that executive performance would 562 
be better during the active stimulation condition compared to the sham stimulation condition 563 

(H1a-d). Conflict effects were found in all four tasks used. However, among the four tasks, 564 
only in the DCCS a better performance could be directly linked to tVNS, with switch costs 565 

being lower in the active condition than in the sham condition. For this reason, among the H1 566 
hypotheses, only H1c was supported. On the physiological level, we expected vmHRV to be 567 

higher in the active condition during both the single stimulation period and the task period 568 
(H2a-d). During both cognitive flexibility tasks, HF increased from resting phase to task 569 

phase, but no difference between active and sham stimulation could be detected. Therefore, 570 
H2a-d could not be observed. Moreover, it was hypothesized that higher cardiac vagal 571 

activity in the single stimulation phase (H3a-d) and in the task phase (H4a-d) would be 572 
associated with better task performance only in the active condition. None of these 573 

hypotheses could not be observed, because none of the correlations found remained 574 
significant after adjusting the p values. 575 

Tables 6 and 7 here 576 

In the present study, we could provide a conceptual replication (Walker et al., 2017) 577 

of the conflict effects previously observed in tasks that are thought to mainly demand 578 
selective attention like the Flanker task (Alderman & Olson, 2014) and response inhibition 579 

with the Spatial Stroop task (Marotta et al., 2018). In the same sense, findings towards dual-580 
task interference evoked by a task used to measure task switching with NLT (Colzato, 581 

Jongkees, et al., 2018), as well as by a task thought to measure set shifting with DCCS 582 
(Zelazo et al., 2014) could be replicated with large effect sizes. However, an effect of tVNS 583 

could be found only on set shifting with DCCS. First, smaller switch costs during tVNS were 584 
observed compared to the sham condition. Second, RT in non-switch trials did not differ from 585 

RT in switch trials during active stimulation, but in the sham stimulation RT in switch trials 586 
were higher than in non-switch trials. Possibly tVNS diminished the dual-task interference, 587 

whereas sham stimulation did not, and this would explain this difference in switch costs 588 
between tVNS and sham stimulation. Importantly, some results referring to a lack of 589 

difference between active and sham stimulation were not substantially supported by Bayesian 590 
estimations, namely for RT in the Spatial Stroop task, HF and respiratory frequency in the 591 
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Flanker task, and percentage error and switch costs in the NLT. Consequently, these findings 592 
should be interpreted carefully.  593 

 The mixed nature of the results and the lack of correlation between cognitive 594 
performance and cardiac vagal activity provide evidence against a generability of the 595 

neurovisceral integration model (Thayer et al., 2009). These findings can be interpreted in 596 
various manners. First, the present study indicates that tVNS may exert a circumscribed 597 

influence on core executive functions. This suggests that the neurovisceral integration model 598 
may be less generally applicable than previously outlined (Smith et al., 2017; Thayer et al., 599 

2009). This specificity is in line with previous findings involving executive functions and 600 
cardiac vagal activity (Jennings, Allen, Gianaros, Thayer, & Manuck, 2015). Jennings and 601 

colleagues (2015) found that cardiac vagal activity was not directly related to resting state 602 
activity of intrinsic brain networks but rather to more localized connectivity. This implies that 603 

the integration between autonomic and cognitive control is more limited than the general 604 
integration originally suggested. Consequently, the neurovisceral integration model (Thayer 605 

et al., 2009) might not apply to the full range of executive functions, but rather to specific 606 
cognitive functions (Jennings et al., 2015).  607 

It is not clear, however, whether the specificity of the integration between autonomic 608 
and cognitive regulation shown in the present study is valid for executive functions in 609 

general—i.e., independently of the method used to manipulate them—or whether tVNS 610 
affects only specific cognitive regulation processes. One of the reasons for this possible 611 

specificity related to tVNS might lie in the level of neurotransmission: tVNS sends a signal to 612 
the locus coeruleus (Dietrich et al., 2008; Kraus et al., 2007), the primary source of 613 

norepinephrine in the brain (Foote et al., 1983). Norepinephrine has been thought to be 614 
engaged by tVNS (Beste et al., 2016; Steenbergen et al., 2015; van Leusden et al., 2015). 615 

Locus coeruleus plays an important role in reorienting attention and cognitive flexibility, and 616 
those neurons have been shown to have a task-related activation (Sara, 2015). Noradrenergic 617 

α-1 and α-2 receptors act in distinct cognitive processes: whereas α-2 receptors engage at 618 
moderate rates of norepinephrine release, thus promoting working memory, α-1 receptors are 619 

activated at higher rates, promoting both focused and flexible attention (Berridge & Spencer, 620 
2016). It is not clear whether DCCS demands more flexible attention than NLT, and whether 621 

the difference between the two could only be observed because tVNS evokes a stronger 622 
release of norepinephrine, engaging α-1 receptors that were necessary for the DCCS but less 623 

so for the NLT. Hence, it is recommended for future studies to address the possible specific 624 
efficacy of tVNS by considering an on-line measurement of norepinephrine such as pupillary 625 

responses (Burger et al., 2020; Keute, Demirezen, et al., 2019; Warren et al., 2018). This 626 
approach might complement and further specify the hypotheses based on the neurovisceral 627 

integration model (Thayer et al., 2009). 628 

Second, despite all efforts in taking well acknowledged recommendations into 629 

account, task impurity (Miyake et al., 2000) may not have been ruled out. Consequently, the 630 
question remains whether other cognitive processes underlying the specific task used to 631 

measure set shifting, and not set shifting per se, are influenced by tVNS. For instance, 632 
inhibitory processes have been thought to take place in cognitive flexibility. Accordingly, for 633 

the efficient activation of another set in the context of set shifting, the inhibition of the 634 
previous, no longer relevant task, is required. Therefore, backward inhibition is a process 635 

highly involved in cognitive flexibility (Mayr & Keele, 2000). It remains unclear if a 636 
comparable amount of backward inhibition is required for both tasks used to measure 637 

cognitive flexibility. Similarly, rather than Spatial Stroop task being considered a good index 638 
of response inhibition, possibly interference control, i.e. control at the level of perception, is 639 

measured by means of this task (Tafuro et al., 2019). To overcome these concerns, it is 640 
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necessary to develop cognitive tasks that minimally vary from each other in the sense that the 641 
additional cognitive processes necessary for performing a cognitive task can be minimized or 642 

at least kept constant. This would enable a more accurate integrative assessment of the core 643 
executive functions in future research with tVNS investigating executive performance. 644 

Third, the lack of a difference between tVNS and sham stimulation regarding cardiac 645 
vagal activity, which is in line with previous findings (Borges et al., 2019; Burger et al., 646 

2019; Burger et al., 2016; De Couck et al., 2017), could have contributed to the heterogeneity 647 
of the findings. Despite ample evidence on the effects of tVNS on cognition (e.g., Sellaro, 648 

Gelder, Finisguerra, & Colzato, 2017; Steenbergen et al., 2015), the evidence provided by the 649 
present study on cardiac vagal activity substantiates the arguments against the suitability of 650 

the earlobe as a sham stimulation, as discussed lately (Borges et al., 2019; Keute, Ruhnau, & 651 
Zaehle, 2018; Rangon, 2018). At present, there is only one detailed description of the nerve 652 

distribution of the human auricle and it shows that the earlobe is free from vagal innervation 653 
(Peuker & Filler, 2002). However, it lacks substantial evidence that electrical stimulation on 654 

the earlobe cannot stimulate brain center nuclei that trigger an increase in cardiac vagal 655 
outflow (Rangon, 2018). This is especially relevant because the boundaries between 656 

particular dermatomes often overlap (Butt et al., 2019), so that a clear understanding of the 657 
nerve distribution of the human auricle is needed. Regardless of the suitability of the earlobe, 658 

it has also been discussed whether vmHRV parameters are sensitive to afferent vagal changes 659 
triggered by tVNS; it is not yet clear whether the electrical signal produced by tVNS is strong 660 

enough to overcome body-related barriers such as skin and blood vessels, and therefore to 661 
trigger vagal afferent firing in a way that would robustly increase prefrontal activity, thus 662 

indirectly affecting cardiac vagal activity (Borges et al., 2019). 663 

In the present study, the cognitive tasks themselves did not seem to have an impact on 664 

the HRV parameters, since neither RMSSD nor HF decreased during the tasks when 665 
compared to before the tasks. It is not clear whether this lack of a decrease—which would be 666 

expected based on the neurovisceral integration model (Smith et al., 2017; Thayer et al., 667 
2009), given the conflict effects elicited by the tasks—was due to tVNS or not. Possibly, the 668 

tasks were not cognitively demanding enough to evoke a decrease in cardiac vagal activity. 669 
The lack of cognitive demand could also explain why we found no effect of tVNS on 670 

inhibitory control, whereas an array of previous studies provided evidence in this direction 671 
(see Table 1). Importantly, none of these previous studies used the same paradigms that were 672 

used in the present study. It is possible that the paradigms for measuring inhibitory control 673 
used here, at least concerning the amount of trials and instructions used in the present study, 674 

are not sensitive to effects that might otherwise be elicited by tVNS. Moreover, none of the 675 
previous studies investigating the effects of tVNS on inhibitory control found overall 676 

enhanced performance, measured by means of RT and percentage error (see Table 1). 677 
Instead, they addressed inhibitory control in specific contexts, such as backward inhibition 678 

when working memory is more strongly demanded (Beste et al., 2016), or response selection 679 
during action cascading (Steenbergen et al., 2015). Regarding cognitive demand, future 680 

studies should incorporate measures of the cognitive demand of the tasks, for instance by 681 
means of subjective questionnaires or imaging techniques such as functional near-infrared 682 

spectroscopy (fNIRS) and fMRI to measure prefrontal activity during task performance. 683 

As the only vmHRV parameter to show changes in the present study, HF increased 684 

during the NLT and DCCS when compared to the resting phase. Since both tasks are 685 
cognitively demanding due to the dual-task interference, based on the neurovisceral 686 

integration model (Thayer et al., 2009) HF should decrease compared to both resting and 687 
single stimulation phases. At the same time, this increase of HF was not associated with a 688 

better performance in the DCCS, as it would be predicted by the neurovisceral integration 689 
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model. Although there was no difference between tVNS and sham stimulation regarding HF 690 
in the present study, the increase in HF during the DCCS might be linked to the positive 691 

effect of tVNS found on switch costs. So far, there has been no other study investigating the 692 
effect of tVNS on respiration, and whether respiration, when affected by tVNS, moderates 693 

executive performance. Future studies should address this question in order to further 694 
investigate the mechanisms of action behind tVNS. 695 

4.1 Limitations 696 

There are limitations to our study that should be mentioned. First, RMSSD increased within 697 

the experimental sessions (see supplementary material). It is not clear, however, whether this 698 
carry-over effect emerged from the stimulation itself, or simply from the fact that the 699 

participants were sitting during the experiment. Thus, this increase during the experimental 700 
sessions may represent a relevant confounder that renders it difficult to interpret cardiac vagal 701 

activity measurements. Second, despite considering inhibitory control and cognitive 702 
flexibility differentially by taking different aspects into account, the present study did not 703 

consider other types of cognitive flexibility. Creatively thinking outside the box, seeing 704 
something from different perspectives (Diamond, 2013), or stochastic reversal learning 705 

(Colzato, Jongkees, et al., 2018) could be aspects of cognitive flexibility prone to be 706 
influenced by tVNS. Third, respiratory frequency was obtained via a dedicated algorithm 707 

from Kubios (Tarvainen et al., 2013). However, a more precise assessment of respiratory 708 
frequency such as a respiration belt or a pneumotachograph is recommendable (Quintana et 709 

al., 2016). Fourth, the sample has a misbalance regarding gender, with male participants 710 
being vast majority. Given that sex differences can influence cardiac vagal activity (Koenig 711 

& Thayer, 2016), this misbalance may have been an issue for the analysis. Finally, as stated 712 
above, the tasks are not comparable to each other. For example, the Flanker task used here 713 

has, when compared to the Spatial Stroop task, a shorter stimulus presentation time and 714 
random intertrial interval. This can provoke different cognitive processes that deviate from 715 

the ones we aimed at measure. A further difference is the length of the tasks, ranging from 716 
five (DCCS) to 15 (Flanker task) minutes. The amount of trials also greatly varies between 717 

the tasks. Due to a lack of measurement of task difficulty, it was not possible to investigate 718 
whether the difficulty level differed strongly between the tasks, as stated above. Furthermore, 719 

the DCCS uses colorful pictures, whereas all other tasks are bicolored and involve time 720 
pressure. The impact of these differences on the cognitive tasks should be considered when 721 

use them in future studies with tVNS.  722 

4.2 Conclusion 723 

The present study is the first to investigate different core executive functions with their 724 

different subtypes in an integrative manner. Additionally, this is the first study to investigate 725 
the effect of tVNS on cognitive flexibility. On the one hand, it was shown that tVNS can lead 726 

to less switch costs in set shifting, possibly explained by diminished the dual-task 727 
interference due to tVNS. On the other hand, the present study provided evidence that tVNS 728 

may have only very specific effects on cognitive processes. By addressing the different 729 
aspects of core cognitive functions in one standardized study design, the present study 730 

contributes to a better understanding of the effects of tVNS by further delineating what kind 731 
of cognitive and physiological mechanisms might be influenced by this neuroenhancement 732 

tool. Future studies investigating the effect of tVNS on executive functions should further 733 
investigate cognitive flexibility and consider task characteristics as well as address different 734 

types of executive functions. 735 

  736 
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Table 1 981 

Summary of the studies with tVNS addressing different types of inhibitory control 982 

Study Dependent 

variable 

Cognitive 

paradigm 

Study 

design 

Sample 

size 

Results 

Beste et al., 

2016 

Response 

inhibition and 

working 

memory 

Backward 

inhibition 

and mental 

workload 

inhibition 

paradigm 

Between-

subjects 

51 Higher response 

inhibition 

processes only 

when working 

memory 

processes are 

needed 

Fischer et 

al., 2018 

Selective 

attention, N2 

and P3 

amplitudes 

Simon Within-

subject 

21 Adaptation to 

conflict was 

enhanced, N2 

amplitude higher 

Keute et al., 

2019 

Automatic 

motor response 

inhibition, 

readiness 

potentials 

Subliminal 

motor 

priming 

Within-

subject 

16 Increased NCE; 

effects on 

readiness 

potentials only in 

compatible trials 

Steenbergen 

et al., 2015 

Response 

selection as a 

consequence of 

response 

inhibition 

Stop-

change 

Between-

subjects 

30 Faster responses 

when two actions 

were executed in 

succession 

Ventura-

Bort et al., 

2018 

Selective 

attention, sAA, 

P3a and P3b 

amplitudes 

Oddball  Within-

subject 

20 Increased sAA after 

tVNS; easy trials 

produced larger P3b 

amplitudes  

Note. NCE = negativity comparability effect; sAA = salivary alpha-amylase; tVNS = 

transcutaneous vagus nerve stimulation 
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 984 

Table 2 

Mean scores and standard deviations for the performance-relevant parameters of the four cognitive tasks used 

in the study 

  RT (ms)  Percentage error (%)  Switch costs (ms) 

    
Active 

Stimulation 

Sham 

Stimulation 

 Active 

Stimulation 

Sham 

Stimulation 

 Active 

Stimulation 

Sham 

Stimulation 

Flanker 

Task 

Congruent 

trials 

482.29 

(68.19) 

469.57 

(48.91) 

 4.50  

(4.68) 

4.64  

(4.45) 

 
  

 
Incongruent 

trials 

562.54 

(88.48) 

548.21 

(73.63) 

 
7.65  

(10.59) 

5.95  

(5.32) 

 
  

Spatial 

Stroop 

Task 

Congruent 

trials 

501.55 

(52.93) 

506.60 

(60.88) 

 1.13 

(1.40) 

1.80 

(2.26) 

 
  

Incongruent 

trials 
526.08 

(60.86) 

537.20 

(64.90) 

 
4.45 

 (3.98) 

4.32 

(4.24) 

 

  

NLT 
Non-switch 

trials 
984.11 

(164.33) 

955.35 

(126.00) 

 21.96 

(4.25) 

23.41  

(2.44) 

 
  

 
Switch 

trials 

1,212.09 

(148.21) 

1,205.95 

(141.31) 

 20.12 

(4.20) 

20.65  

(3.85) 

 
  

    
 

  
 225.23 

(107.14) 

251.08 

(97.47) 

DCCS 
Non-switch 

Trials 
600.16 

(138.69) 

577.51 

(113.56) 

 18.31 

(16.01) 

16.68 

(15.48) 

 
  

 
Switch 

Trials 

603.90 

(137.04) 

614.01 

(138.65) 

 28.24 

(23.92) 

27.76 

(24.32) 

 
  

        
 

  
 4.77 

(39.75) 

37.54 

(45.39) 

Note. RT = reaction times; NLT = Number Letter task; DCCS = Dimensional Card Sorting task 
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  985 

Table 3 

Inhibitory control tasks: Results of repeated measures analysis of variance for the performance-related as well as heart 

rate variability parameters, with Bayesian analyses (B10) 

Flanker task  Spatial Stroop task 

  F-value p-value ηp
2  B10   F-value p-value ηp

2  B10  

RT    

     Congruency 95.788 < .001 .755 2.018E +13  39.001 < .001 .557 2,732.297 

     Stimulation condition 1.192 .283  0.311  0.860 .361  0.344 

     Stimulation x congruency 0.001 .992   0.280  0.754 .392   3.047 

Percentage error   

     Congruency 8.202 .007 .209 3.796  37.673 < .001 .549 4.204E+7 

     Stimulation condition 0.095 .760  0.196  0.098 .756  0.201 

     Stimulation x congruency  0.511 .480   0.278  2.626 .115   0.596 

RMSSD       

     Stimulation condition 0.250 .621  0.215  0.009 .926  0.189 

     Time measurements 2,862 .065  0.220  2.576 .084  0.154 

     Time x condition 0.351 .645   0.048  3.845 .027  0.110 0.372 

HF          

     Stimulation condition 1.669 .211  0.664  0.012 .915  0.196 

     Time measurements 2.291 .135  0.632  2.146 .132  0.726 

     Time x condition 3.038 .059   0.158  0.681 .512   0.203 

Respiratory frequency   

     Stimulation condition 0.714 .405  0.617  0.213 .648  0.227 

     Time measurements 3.518 .047 0.102 0.102  2.917 .062  0.099 

     Time x condition 0.855 .430  0.010  0.109 .897  0.087 

Note. RT = reaction times; RMSSD = root mean square of the successive differences; HF = high frequency 
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 986 Table 4 

Cognitive flexibility tasks: Results of repeated measures analysis of variance for the performance-related as well as heart 

rate variability parameters, with Bayesian analyses (B10) 

 NLT  DCCS 

  F-value p-value ηp
2 B10  F-value p-value ηp

2 B10 

RT     

     Trial type 225.365 < .001 .879 1.446E+22  14.720 .001 .322 0.314 

     Stimulation condition 0.454 .505  0.210  0.015 .904  0.192 

     Stimulation x congruency 1.670 .206   0.411  11.106 .002 .264 0.339 

Percentage error   

     Trial type 59.615 < .001 .658 602.764  15.343 < .001 .331 0.491 

     Stimulation condition 1.996 .168  1.097  0.177 .677  0.233 

     Stimulation x congruency 3.214 .083  0.382  0.552 .463  0.250 

Switch costs1 1.513 .140  0.529  2.797 .009 .494 4.916 

RMSSD   

     Stimulation condition < 0.001 .991  0.152  0.024 .877  0.160 

     Time measurements 0.517 .599  0.073  1.590 .212  0.133 

     Time x condition 0.810 .449  0.011   1.269 .288  0.150 

HF   

     Stimulation condition 0.324 .575  0.216  0.217 .646  0.186 

     Time measurements 4.689 .014 .039 12.853  6.821 .002 .078 260.327 

     Time x condition 1.061 .355  0.163  0.391 .679  0.130 

Respiratory frequency   

     Stimulation condition 0.021 .885  0.159  0.010 .920  0.168 

     Time measurements 0.657 .522  0.078  1.516 .228  0.078 

     Time x condition 0.508 .604  0.100  0.545 .582  0.083 

Note. 1The depicted results are from t-tests, i.e. for switch costs, instead of F and ηp
2, the results are for t-values and Cohen’s 

d, respectively. RT = reaction times; RMSSD = root mean square of the successive differences; HF = high frequency 
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 988 

Table 5 

Mean scores and standard deviations for the heart rate variability parameters over time in the four 

cognitive task blocks 

   RMSSD  HF  Respiratory frequency 

   
Active 

Stimulation 

Sham 

Stimulation 

 Active 

Stimulation 

Sham 

Stimulation 

 Active 

Stimulation 

Sham 

Stimulation 

Flanker 

Task 
Resting 

48.43 

(22.38) 

52.34 

(26.56) 

 13.81 

(8.78) 

13.71 

(12.45) 

 12.36 

(2.06) 

12.19 

(2.68) 

 tVNS 
52.56 

(28.53) 

54.66 

(25.02) 

 15.27 

(11.26) 

19.59 

(13.94) 

 12.51 

(2.40) 

12.10 

(2.91) 

  Task 
55.44 

(29.81) 

55.26 

(24.66) 

 14.44 

(9.60) 

16.16 

(11.56) 

 12.23 

(2.33) 

11.66 

(3.03) 

Spatial 

Stroop 

Task 

Resting 
52.38 

(27.64) 

53.48 

(21.52) 

 12.97 

(10.05) 

14.12 

(10.80) 

 14.70 

(9.61) 

15.85 

(10.79) 

tVNS 
54.47 

(25.99) 

58.85 

(26.31) 

 18.74 

(13.19) 

17.31 

(13.60) 

 19.60 

(11.82) 

19.16 

(15.58) 

  Task 
55.93 

(26.89) 

50.70 

(19.28) 

 15.65 

(8.45) 

17.45 

(13.91) 

 16.25 

(9.12) 

20.32 

(16.48) 

NLT Resting 
51.82 

(24.75) 

50.07 

(22.2) 

 18.06 

(12.22) 

13.83 

(10.98) 

 12.20 

(2.03) 

12.02 

(2.33) 

 tVNS 
49.91 

(21.12) 

51.82 

(20.44) 

 18.51 

(12.56) 

18.85 

(15.07) 

 12.27 

(2.05) 

12.38 

(2.64) 

  Task 
50.28 

(25.77) 

48.78 

(18.45) 

 17.78 

(12.13) 

17.547 

(9.40) 

 12.06 

(1.88) 

12.17 

(2.48) 

DCCS Resting 
54.26 

(24.46) 

51.82 

(22.46) 

 14.93 

(10.11) 

16.24 

(14.98) 

 13.52 

(8.82) 

15.66 

(13.96) 

 tVNS 
54.90 

(25.86) 

57.4 

(24.75) 

 17.56 

(12.57) 

19.59 

(13.11) 

 17.95 

(12.18) 

19.23 

(12.80) 

  Task 
56.36 

(24.52) 

55.41 

(23.24) 

 19.83 

(13.16) 

17.55 

(11.14) 

 20.76 

(11.75) 

19.90 

(10.07) 

Note. RMSSD = root mean square of the successive differences; HF = high frequency; tVNS = 

transcutaneous vagus nerve stimulation (single stimulation phase); NLT = Number Letter task; DCCS = 
Dimensional Change Card Sorting task 
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Table 6 

Pearson product-moment correlations between cognitive performance-relevant parameters and vagally-mediated heart rate variable parameters 
during the single stimulation phase (tVNS) and the task phase (task) for active and sham conditions. Coefficients for the inhibitory control tasks 

      Active stimulation  Sham stimulation 

   RT  Percentage error  RT  Percentage error 

   
Congruent 

trials 

Incongruent 

trials 

 Congruent 

trials 

Incongruent 

trials 

 Congruent 

trials 

Incongruent 

trials 

 Congruent 

trials 

Incongruent 

trials 

Flanker task             

RMSSD tVNS Pearson’s r .02 -.05  -.21 -.22  -.29 -.23  .26 .197 

  p value .935 .768  .243 .233  .114 .207  .144 .280 

 Task Pearson’s r -.06 -.08  -.25 -.28  -.24 -.24  .16 .27 

  p value .760 .666  .171 .115  .193 .189  .369 .140 

HF tVNS Pearson’s r -.20 -.19  .16 .23  -.24 .01  .06 .03 

  p value .288 .334  .395 .237  .262 .991  .785 .906 

 Task Pearson’s r -.25 -.30  -.09 -.17  -.34 -.18  -.01 .07 

    p value .189 .119  .647 .378  .109 .394  .987 .760  

Spatial Stroop task   
 

  
 

 
 

 

RMSSD tVNS Pearson’s r .06 -.04  -.22 -.15  -.42* -.39*  -.12 -.01 

  p value .755 .845  .227 .403  .018 .027  .532 .987 

 Task Pearson’s r -.02 -.13  -.18 -.34  -.34 -.31  .19 .12 

  p value .907 .485  .318 .054  .059 .088  .311 .514 

HF tVNS Pearson’s r -.25 -.27  -.11 .28  -.43* -.32  .17 .45* 

  p value .175 .151  .579 .131  .038 .142  .437 .032 

 Task Pearson’s r -.20 -.07  -.17 .12  -.27 -.24  .11 .10 

    p value .302 .715  .376 .539  .219 .264  .623 .642 

Note. * p < .05, ** p < .01, *** p < .001. Non-adjusted p values. RT = reaction times; RMSSD = root mean square of successive differences; HF = 

high frequency; tVNS = transcutaneous vagus nerve stimulation (single stimulation phase) 
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Table 7 

Pearson product-moment correlations between cognitive performance-relevant parameters and vagally-mediated heart rate variable parameters during the 

single stimulation phase (tVNS) and the task phase (task) for active and sham conditions. Coefficients for the cognitive flexibility tasks 

      Active stimulation  Sham stimulation 

   RT  Percentage error Switch costs  RT  Percentage error Switch costs 

   
Non-switch 

trials 

Switch 

trials 

 Non-switch 

trials 

Switch 

trials 
 

 Non-switch 

trials 

Switch 

trials 

 Non-switch 

trials 

Switch 

trials 
 

NLT                

RMSSD tVNS Pearson’s r -.28 -.24  .40* .14 .13  .12 .15  .19 -.06 -.02 

  p value .132 .179  .025 .434 .434  .513 .430  .308 .727 .934 

 Task Pearson’s r -.06 -.03  .33 .31 .13  .10 .29  .22 -.02 .28 

  p value .732 .860  .070 .081 .475  .595 .113  .238 .909 .115 

HF tVNS Pearson’s r -.44* -.50**  .37* .31 .14  .09 -.10  .11 -.23 -.28 

  p value .015 .005  .046 .099 .463  .677 .626  .599 .279 .170 

 Task Pearson’s r -.39* -.24  .28 .22 .42*  -.10 -.02  .48* .07 .15 

    p value .034 .204  .129 .242 .020  .621 .914  .015 .748 .482 

DCCS                

RMSSD tVNS Pearson’s r -.27 -.17  .24 .29 .40*  .09 .04  -.03 -.01 -.10 

  p value .134 .351  .180 .103 .024  .623 .837  .869 .973 .603 

 Task Pearson’s r -.25 -.14  .16 .23 .37*  .06 .01  .03 .02 -.08 

  p value .177 .440  .385 .212 .035  .741 .953  .858 .920 .660 

HF tVNS Pearson’s r -.40* -.42*  .29 .31 -.08  .05 .04  -.19 -.14 .03 

  p value .026 .018  .110 .089 .684  .796 .835  .356 .483 .900 

 Task Pearson’s r .07 -.01  -.27 -.19 -.42*  -.05 -.03  .02 -.06 .10 

    p value .715 .970  .150 .314 .019  .819 .905  .931 .761 .619 

Note. * p < .05, ** p < .01, *** p < .001. Non-adjusted p values. RT = reaction times; RMSSD = root mean square of successive differences; HF = high 

frequency; NLT = Number Letter task; DCCS = Dimensional Change Card Sorting task; tVNS = transcutaneous vagus nerve stimulation (single stimulation 

phase) 
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Figure captions 991 

Figure 1. Consort (2019) diagram 992 

 993 

Figure 2. Visual depiction of the four cognitive tasks used in the study. (a) Flanker task; (b) 994 

Spatial Stroop task; (c) Number Letter task (NLT); (d) Dimensional Change Card Sorting 995 

task (DCCS) 996 

 997 

Figure 3. A) Experimental overview. B) Graphical depiction of the phases within each block. 998 

In total, the participants underwent four task blocks per testing day in a randomized order 999 

 1000 
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