35 research outputs found

    Predicting the \u3ci\u3ein vivo\u3c/i\u3e Mechanism of Action for Drug Leads using NMR Metabolomics

    Get PDF
    New strategies are needed to circumvent increasing outbreaks of resistant strains of pathogens and to expand the dwindling supply of effective antimicrobials. A common impediment to drug development is the lack of an easy approach to determine the in vivo mechanism of action and efficacy of novel drug leads. Towards this end, we describe an unbiased approach to predict in vivo mechanisms of action from NMR metabolomics data. Mycobacterium smegmatis, a nonpathogenic model organism for Mycobacterium tuberculosis, was treated with 12 known drugs and 3 chemical leads identified from a cell-based assay. NMR analysis of drug-induced changes to the M. smegmatis metabolome resulted in distinct clustering patterns correlating with in vivo drug activity. The clustering of novel chemical leads relative to known drugs provides a mean to identify a protein target or predict in vivo activity

    Harnessing Mycobacterium bovis BCG Trained Immunity to Control Human and Bovine Babesiosis

    Get PDF
    Babesiosis is a disease caused by tickborne hemoprotozoan apicomplexan parasites of the genus Babesia that negatively impacts public health and food security worldwide. Development of effective and sustainable vaccines against babesiosis is currently hindered in part by the absence of definitive host correlates of protection. Despite that, studies in Babesia microti and Babesia bovis, major causative agents of human and bovine babesiosis, respectively, suggest that early activation of innate immune responses is crucial for vertebrates to survive acute infection. Trained immunity (TI) is defined as the development of memory in vertebrate innate immune cells, allowing more efficient responses to subsequent specific and non-specific challenges. Considering that Mycobacterium bovis bacillus Calmette-Guerin (BCG), a widely used anti-tuberculosis attenuated vaccine, induces strong TI pro-inflammatory responses, we hypothesize that BCG TI may protect vertebrates against acute babesiosis. This premise is supported by early investigations demonstrating that BCG inoculation protects mice against experimental B. microti infection and recent observations that BCG vaccination decreases the severity of malaria in children infected with Plasmodium falciparum, a Babesia-related parasite. We also discuss the potential use of TI in conjunction with recombinant BCG vaccines expressing Babesia immunogens. In conclusion, by concentrating on human and bovine babesiosis, herein we intend to raise awareness of BCG TI as a strategy to efficiently control Babesia infection

    Whole genomic sequence analysis of \u3ci\u3eBacillus infantis\u3c/i\u3e: defining the genetic blueprint of strain NRRL B-14911, an emerging cardiopathogenic microbe

    Get PDF
    Background: We recently reported the identification of Bacillus sp. NRRL B-14911 that induces heart autoimmunity by generating cardiac-reactive T cells through molecular mimicry. This marine bacterium was originally isolated from the Gulf of Mexico, but no associations with human diseases were reported. Therefore, to characterize its biological and medical significance, we sought to determine and analyze the complete genome sequence of Bacillus sp. NRRL B-14911. Results: Based on the phylogenetic analysis of 16S ribosomal RNA (rRNA) genes, sequence analysis of the 16S-23S rDNA intergenic transcribed spacers, phenotypic microarray, and matrix-assisted laser desorption ionization time-offlight mass spectrometry, we propose that this organism belongs to the species Bacillus infantis, previously shown to be associated with sepsis in a newborn child. Analysis of the complete genome of Bacillus sp. NRRL B-14911 revealed several virulence factors including adhesins, invasins, colonization factors, siderophores and transporters. Likewise, the bacterial genome encodes a wide range of methyl transferases, transporters, enzymatic and biochemical pathways, and insertion sequence elements that are distinct from other closely related bacilli. Conclusions: The complete genome sequence of Bacillus sp. NRRL B-14911 provided in this study may facilitate genetic manipulations to assess gene functions associated with bacterial survival and virulence. Additionally, this bacterium may serve as a useful tool to establish a disease model that permits systematic analysis of autoimmune events in various susceptible rodent strains

    A rational framework for evaluating the next generation of vaccines against Mycobacterium avium subspecies paratuberculosis

    Get PDF
    Since the early 1980s, several investigations have focused on developing a vaccine against Mycobacterium avium subspecies paratuberculosis (MAP), the causative agent of Johne\u27s disease in cattle and sheep. These studies used whole-cell inactived vaccines that have proven useful in limiting disease progression, but have not prevented infection. In contrast, modified live vaccines that invoke a Th1 type immune response, may improve protection against infection. Spurred by recent advances in the ability to create defined knockouts in MAP, several independent laboratories have developed modified live vaccine candidates by transcriptional mutation of virulence and metablolic genes in MAP. In order to accelerate the process of identification and comparative elvaluation of he most promising modified live MAP vaccine candidates, members of a multi-institutional USDA- funded research consortium, the Johne\u27s disease integrated program (JDIP), met to established a standardized testing platform using agreed upon protocols. A total of 22 candidates vaccine strains developed in five independent laboratories in the United States and New Zealand voluntarily entered into a double blind gated trial pipeline. In Phase I, the survival characteristics of each candidate were determined in bovine macrophages. Attenuated strains moved to Phase II, where tissue colonization of C57/BL6 mice were evaluated in a challenge model. In Phase III, five promising candidates from Phase I and II were evaluated for their ability to reduce fecal shedding, tissue colonization and pathology in a baby goat challenge model. Formation of a multi-institutional consortium for vaccine strain evaluation has revealed insights for the implementation of vaccine trials for Johne\u27s disease and other animals pathogens. We conclude by suggesting the best way forward based on this 3-phase trial experience and challenge the rationale for use of a macrophage-to-mouse-to native host pipeline for MAP vaccine development

    Johne’s Disease, Inflammatory Bowel Disease, and \u3ci\u3eMycobacterium paratuberculosis\u3c/i\u3e

    Get PDF
    Johne’s disease is a chronic diarrhea affecting all ruminants. Mycobacterium avium subsp. paratuberculosis (MAP), a slowly growing mycobacteria, is the etiologic agent. There is also a concern that MAP might be a causative agent of some cases of inflammatory bowel disease in humans, especially Crohn’s disease. Food products including pasteurized bovine milk have been suggested as potential sources of human infection. This review addresses microbial factors that may contribute to its pathogenicity. In addition, the experimental evidence defining MAP as the cause of Johne’s disease and the issues and controversies surrounding its potential pathogenic role in humans are discussed

    Non-Essentiality of \u3ci\u3ealr\u3c/i\u3e and \u3ci\u3emurI\u3c/i\u3e Genes in Mycobacteria

    Get PDF
    Amino acids are the building blocks of life. If DNA is the blueprint, amino acids are the lumber that proteins are built with. Proteins are built with left-handed, L- forms of amino acids. Bacteria have an essential cell wall component that happens to be an exception: peptidoglycan. Bacteria have enzymes called racemases that convert L- amino acid forms into right-handed, D- forms. Amino acids participate in many reactions with keto acids. Transaminases allow conversion between amino acids by transfer of an amino group. Previous reports claimed there is no D-ala transaminase activity in mycobacteria and thus alr and murI genes encode essential functions. However, in studies performed by our lab, alr and murI mutants were able to grow on minimal or low-nitrogen content media. This suggests there is D-ala transaminase activity in mycobacteria and thus alr and murI genes encode essential functions. We complete a carbon-source experiment that supports this hypothesis

    Roles of Mycobacterium smegmatis d-Alanine:d-Alanine Ligase and d-Alanine Racemase in the Mechanisms of Action of and Resistance to the Peptidoglycan Inhibitor d-Cycloserine

    No full text
    d-Cycloserine (DCS) targets the peptidoglycan biosynthetic enzymes d-alanine racemase (Alr) and d-alanine:d-alanine ligase (Ddl). Previously, we demonstrated that the overproduction of Alr in Mycobacterium smegmatis determines a DCS resistance phenotype. In this study, we investigated the roles of both Alr and Ddl in the mechanisms of action of and resistance to DCS in M. smegmatis. We found that the overexpression of either the M. smegmatis or the Mycobacterium tuberculosis ddl gene in M. smegmatis confers resistance to DCS, but at lower levels than the overexpression of the alr gene. Furthermore, a strain overexpressing both the alr and ddl genes displayed an eightfold-higher level of resistance. To test the hypothesis that inhibition of Alr by DCS decreases the intracellular pool of d-alanine, we determined the alanine pools in M. smegmatis wild-type and recombinant strains with or without DCS treatment. Alr-overproducing strain GPM14 cells not exposed to DCS displayed almost equimolar amounts of l- and d-alanine in the steady state. The wild-type strain and Ddl-overproducing strains contained a twofold excess of l- over d-alanine. In all strains, DCS treatment led to a significant accumulation of l-alanine and a concomitant decease of d-alanine, with approximately a 20-fold excess of l-alanine in the Ddl-overproducing strains. These data suggest that Ddl is not significantly inhibited by DCS at concentrations that inhibit Alr. This study is of significance for the identification of the lethal target(s) of DCS and the development of novel drugs targeting the d-alanine branch of mycobacterial peptidoglycan biosynthesis
    corecore